Cargando…
Forecasting Hospitalizations Due to COVID-19 in South Dakota, USA
Anticipating the number of hospital beds needed for patients with COVID-19 remains a challenge. Early efforts to predict hospital bed needs focused on deriving predictions from SIR models, largely at the level of countries, provinces, or states. In the USA, these models rely on data reported by stat...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8088317/ https://www.ncbi.nlm.nih.gov/pubmed/33969258 http://dx.doi.org/10.1007/s41666-021-00094-8 |
_version_ | 1783686824532639744 |
---|---|
author | Wesner, Jeff S. Van Peursem, Dan Flores, José D. Lio, Yuhlong Wesner, Chelsea A. |
author_facet | Wesner, Jeff S. Van Peursem, Dan Flores, José D. Lio, Yuhlong Wesner, Chelsea A. |
author_sort | Wesner, Jeff S. |
collection | PubMed |
description | Anticipating the number of hospital beds needed for patients with COVID-19 remains a challenge. Early efforts to predict hospital bed needs focused on deriving predictions from SIR models, largely at the level of countries, provinces, or states. In the USA, these models rely on data reported by state health agencies. However, predicting disease and hospitalization dynamics at the state level is complicated by geographic variation in disease parameters. In addition, it is difficult to make forecasts early in a pandemic due to minimal data. Bayesian approaches that allow models to be specified with informed prior information from areas that have already completed a disease curve can serve as prior estimates for areas that are beginning their curve. Here, a Bayesian non-linear regression (Weibull function) was used to forecast cumulative and active COVID-19 hospitalizations for SD, USA, based on data available up to 2020-07-22. As expected, early forecasts were dominated by prior information, which was derived from New York City. Importantly, hospitalization trends differed within South Dakota due to early peaks in an urban area, followed by later peaks in rural areas of the state. Combining these trends led to altered forecasts with relevant policy implications. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s41666-021-00094-8. |
format | Online Article Text |
id | pubmed-8088317 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-80883172021-05-03 Forecasting Hospitalizations Due to COVID-19 in South Dakota, USA Wesner, Jeff S. Van Peursem, Dan Flores, José D. Lio, Yuhlong Wesner, Chelsea A. J Healthc Inform Res Research Article Anticipating the number of hospital beds needed for patients with COVID-19 remains a challenge. Early efforts to predict hospital bed needs focused on deriving predictions from SIR models, largely at the level of countries, provinces, or states. In the USA, these models rely on data reported by state health agencies. However, predicting disease and hospitalization dynamics at the state level is complicated by geographic variation in disease parameters. In addition, it is difficult to make forecasts early in a pandemic due to minimal data. Bayesian approaches that allow models to be specified with informed prior information from areas that have already completed a disease curve can serve as prior estimates for areas that are beginning their curve. Here, a Bayesian non-linear regression (Weibull function) was used to forecast cumulative and active COVID-19 hospitalizations for SD, USA, based on data available up to 2020-07-22. As expected, early forecasts were dominated by prior information, which was derived from New York City. Importantly, hospitalization trends differed within South Dakota due to early peaks in an urban area, followed by later peaks in rural areas of the state. Combining these trends led to altered forecasts with relevant policy implications. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s41666-021-00094-8. Springer International Publishing 2021-05-01 /pmc/articles/PMC8088317/ /pubmed/33969258 http://dx.doi.org/10.1007/s41666-021-00094-8 Text en © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 |
spellingShingle | Research Article Wesner, Jeff S. Van Peursem, Dan Flores, José D. Lio, Yuhlong Wesner, Chelsea A. Forecasting Hospitalizations Due to COVID-19 in South Dakota, USA |
title | Forecasting Hospitalizations Due to COVID-19 in South Dakota, USA |
title_full | Forecasting Hospitalizations Due to COVID-19 in South Dakota, USA |
title_fullStr | Forecasting Hospitalizations Due to COVID-19 in South Dakota, USA |
title_full_unstemmed | Forecasting Hospitalizations Due to COVID-19 in South Dakota, USA |
title_short | Forecasting Hospitalizations Due to COVID-19 in South Dakota, USA |
title_sort | forecasting hospitalizations due to covid-19 in south dakota, usa |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8088317/ https://www.ncbi.nlm.nih.gov/pubmed/33969258 http://dx.doi.org/10.1007/s41666-021-00094-8 |
work_keys_str_mv | AT wesnerjeffs forecastinghospitalizationsduetocovid19insouthdakotausa AT vanpeursemdan forecastinghospitalizationsduetocovid19insouthdakotausa AT floresjosed forecastinghospitalizationsduetocovid19insouthdakotausa AT lioyuhlong forecastinghospitalizationsduetocovid19insouthdakotausa AT wesnerchelseaa forecastinghospitalizationsduetocovid19insouthdakotausa |