Cargando…
Deep learning integration of molecular and interactome data for protein–compound interaction prediction
MOTIVATION: Virtual screening, which can computationally predict the presence or absence of protein–compound interactions, has attracted attention as a large-scale, low-cost, and short-term search method for seed compounds. Existing machine learning methods for predicting protein–compound interactio...
Autores principales: | Watanabe, Narumi, Ohnuki, Yuuto, Sakakibara, Yasubumi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8088618/ https://www.ncbi.nlm.nih.gov/pubmed/33933121 http://dx.doi.org/10.1186/s13321-021-00513-3 |
Ejemplares similares
-
RNA secondary structure prediction using deep learning with thermodynamic integration
por: Sato, Kengo, et al.
Publicado: (2021) -
Informative RNA base embedding for RNA structural alignment and clustering by deep representation learning
por: Akiyama, Manato, et al.
Publicado: (2022) -
Integrating Statistical Predictions and Experimental Verifications for Enhancing Protein-Chemical Interaction Predictions in Virtual Screening
por: Nagamine, Nobuyoshi, et al.
Publicado: (2009) -
MetaVelvet-DL: a MetaVelvet deep learning extension for de novo metagenome assembly
por: Liang, Kuo-ching, et al.
Publicado: (2021) -
A Max-Margin Model for Predicting Residue—Base Contacts in Protein–RNA Interactions
por: Kashiwagi, Shunya, et al.
Publicado: (2021)