Cargando…
Predicting Emotional States Using Behavioral Markers Derived From Passively Sensed Data: Data-Driven Machine Learning Approach
BACKGROUND: Mental health disorders affect multiple aspects of patients’ lives, including mood, cognition, and behavior. eHealth and mobile health (mHealth) technologies enable rich sets of information to be collected noninvasively, representing a promising opportunity to construct behavioral marker...
Autores principales: | Sükei, Emese, Norbury, Agnes, Perez-Rodriguez, M Mercedes, Olmos, Pablo M, Artés, Antonio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8088855/ https://www.ncbi.nlm.nih.gov/pubmed/33749612 http://dx.doi.org/10.2196/24465 |
Ejemplares similares
-
Continuous Assessment of Function and Disability via Mobile Sensing: Real-World Data-Driven Feasibility Study
por: Sükei, Emese, et al.
Publicado: (2023) -
Automatic patient functionality assessment from multimodal data using deep learning techniques – Development and feasibility evaluation
por: Sükei, Emese, et al.
Publicado: (2023) -
Shift in Social Media App Usage During COVID-19 Lockdown and Clinical Anxiety Symptoms: Machine Learning–Based Ecological Momentary Assessment Study
por: Ryu, Jihan, et al.
Publicado: (2021) -
Identifying Behavioral Phenotypes of Loneliness and Social Isolation with Passive Sensing: Statistical Analysis, Data Mining and Machine Learning of Smartphone and Fitbit Data
por: Doryab, Afsaneh, et al.
Publicado: (2019) -
Response heterogeneity: Challenges for personalised medicine and big data approaches in psychiatry and chronic pain
por: Norbury, Agnes, et al.
Publicado: (2018)