Cargando…
Genomic analysis between idiopathic pulmonary fibrosis and associated lung cancer using laser‐assisted microdissection: A case report
Lung cancer (LC) is the most fatal complication of idiopathic pulmonary fibrosis (IPF). However, the molecular pathogenesis of the development of LC from IPF is still unclear. Here, we report a case of IPF‐associated LC for which we investigated the genetic alterations between IPF and LC. We extract...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons Australia, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8088965/ https://www.ncbi.nlm.nih.gov/pubmed/33784423 http://dx.doi.org/10.1111/1759-7714.13924 |
Sumario: | Lung cancer (LC) is the most fatal complication of idiopathic pulmonary fibrosis (IPF). However, the molecular pathogenesis of the development of LC from IPF is still unclear. Here, we report a case of IPF‐associated LC for which we investigated the genetic alterations between IPF and LC. We extracted formalin‐fixed paraffin‐embedded DNA from each part of the surgical lung tissue using a laser‐assisted microdissection technique. The mutations in each part were detected by next‐generation sequencing (NGS) using 72 lung cancer‐related mutation panels. Five mutations were found in IPF and four in LC. Almost all somatic mutations did not overlap between the IPF and LC regions. These findings suggest that IPF‐associated LC may not be a result of the accumulation of somatic mutations in the regenerated epithelium of the honeycomb lung in the IPF region. |
---|