Cargando…
Combination of deep neural network with attention mechanism enhances the explainability of protein contact prediction
Deep learning has emerged as a revolutionary technology for protein residue‐residue contact prediction since the 2012 CASP10 competition. Considerable advancements in the predictive power of the deep learning‐based contact predictions have been achieved since then. However, little effort has been pu...
Autores principales: | Chen, Chen, Wu, Tianqi, Guo, Zhiye, Cheng, Jianlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8089057/ https://www.ncbi.nlm.nih.gov/pubmed/33538038 http://dx.doi.org/10.1002/prot.26052 |
Ejemplares similares
-
Prediction of inter-chain distance maps of protein complexes with 2D attention-based deep neural networks
por: Guo, Zhiye, et al.
Publicado: (2022) -
DeepDist: real-value inter-residue distance prediction with deep residual convolutional network
por: Wu, Tianqi, et al.
Publicado: (2021) -
Correction to: DeepDist: real‑value inter‑residue distance prediction with deep residual convolutional network
por: Wu, Tianqi, et al.
Publicado: (2021) -
Combining pairwise structural similarity and deep learning interface contact prediction to estimate protein complex model accuracy in CASP15
por: Roy, Raj S., et al.
Publicado: (2023) -
Single-cell Hi-C data enhancement with deep residual and generative adversarial networks
por: Wang, Yanli, et al.
Publicado: (2023)