Cargando…

Effects of L-3,4-dihydroxyphenylalanine (L-Dopa) Treatment in the Neuroendocrine Response to Stress

Stressful stimuli evoke a complex response mediated by two systems: the Sympathetic-Adreno-Medullar (SAM) axis and the Hypothalamus-Pituitary-Adrenal (HPA) axis. Among the factors involved in stress, glucocorticoids and catecholamines secreted from the adrenal glands and sympathetic nerves are the m...

Descripción completa

Detalles Bibliográficos
Autores principales: Orrillo, Santiago Jordi, Imsen, Mercedes, Lizarraga, Alfonsina, Romero, Ana Clara, De Fino, Fernanda, Zanoni, Milagros Peña, Machado, Alejandra Inés Abeledo, Zarate, Sandra Cristina, Ferraris, Jimena, Diaz, Graciela Susana, Pisera, Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8089524/
http://dx.doi.org/10.1210/jendso/bvab048.136
_version_ 1783687059077070848
author Orrillo, Santiago Jordi
Imsen, Mercedes
Lizarraga, Alfonsina
Romero, Ana Clara
De Fino, Fernanda
Zanoni, Milagros Peña
Machado, Alejandra Inés Abeledo
Zarate, Sandra Cristina
Ferraris, Jimena
Diaz, Graciela Susana
Pisera, Daniel
author_facet Orrillo, Santiago Jordi
Imsen, Mercedes
Lizarraga, Alfonsina
Romero, Ana Clara
De Fino, Fernanda
Zanoni, Milagros Peña
Machado, Alejandra Inés Abeledo
Zarate, Sandra Cristina
Ferraris, Jimena
Diaz, Graciela Susana
Pisera, Daniel
author_sort Orrillo, Santiago Jordi
collection PubMed
description Stressful stimuli evoke a complex response mediated by two systems: the Sympathetic-Adreno-Medullar (SAM) axis and the Hypothalamus-Pituitary-Adrenal (HPA) axis. Among the factors involved in stress, glucocorticoids and catecholamines secreted from the adrenal glands and sympathetic nerves are the main effectors of the physiological adaptations to stressors. Besides these, prolactin (PRL) is another hormone secreted under stress conditions. Catecholamines are synthesized from the hydroxylated precursor L-Dopa. This agent is commonly used for the treatment of Parkinson’s disease and it would act as a neurotransmitter per se. On the other hand, it has been suggested that HPA axis dysregulation is a potential risk factor for the development of depression. In line with this, several studies reported that L-Dopa treatment may alter the serum levels of ACTH, PRL, and glucocorticoids in parkinsonian patients and Parkinson’s disease animal models. In the present study, we determined whether the chronic treatment with L-Dopa altered the stress response inducing depressive-like behaviours. Adult male Wistar rats were treated orally during 24 days with LEBOCAR® - commercial formulation of L-Dopa (75 mg/day) and Carbidopa (7.5 mg/day) - in drinking water. Animals were stressed by immobilization during the last 9 days of treatment and depressive-like behaviours were assessed by the sucrose intake and forced swimming tests. Behavioural tests showed no signs of depressive-like behaviours in the LEBOCAR®-treated and/or stressed rats. We next explored the SAM axis reactivity. Circulating noradrenaline and adrenaline increased in rats treated with LEBOCAR® (p<0.05; HPLC). Also, the adrenals from stressed animals showed higher content of adrenaline (p<0.05). Then, we studied the HPA axis activity. Chronically stressed rats displayed a lower ACTH secretion (ELISA) and a downregulation of POMC expression (qPCR) in the anterior pituitary (p<0.05). In addition, LEBOCAR® treatment induced a reduction in serum ACTH and POMC levels (p<0.05). As expected, serum corticosterone (ELISA) enhanced under chronic stress, an effect that was inhibited by treatment with LEBOCAR® (p<0.05). Finally, pituitary PRL gene expression (qPCR) was downregulated by LEBOCAR® treatment with a more pronounced effect when rats were also stressed (p<0.05). Our results suggest that L-Dopa alters the neuroendocrine stress response enhancing SAM axis reactivity and reducing HPA axis activity and PRL expression.
format Online
Article
Text
id pubmed-8089524
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-80895242021-05-06 Effects of L-3,4-dihydroxyphenylalanine (L-Dopa) Treatment in the Neuroendocrine Response to Stress Orrillo, Santiago Jordi Imsen, Mercedes Lizarraga, Alfonsina Romero, Ana Clara De Fino, Fernanda Zanoni, Milagros Peña Machado, Alejandra Inés Abeledo Zarate, Sandra Cristina Ferraris, Jimena Diaz, Graciela Susana Pisera, Daniel J Endocr Soc Adrenal Stressful stimuli evoke a complex response mediated by two systems: the Sympathetic-Adreno-Medullar (SAM) axis and the Hypothalamus-Pituitary-Adrenal (HPA) axis. Among the factors involved in stress, glucocorticoids and catecholamines secreted from the adrenal glands and sympathetic nerves are the main effectors of the physiological adaptations to stressors. Besides these, prolactin (PRL) is another hormone secreted under stress conditions. Catecholamines are synthesized from the hydroxylated precursor L-Dopa. This agent is commonly used for the treatment of Parkinson’s disease and it would act as a neurotransmitter per se. On the other hand, it has been suggested that HPA axis dysregulation is a potential risk factor for the development of depression. In line with this, several studies reported that L-Dopa treatment may alter the serum levels of ACTH, PRL, and glucocorticoids in parkinsonian patients and Parkinson’s disease animal models. In the present study, we determined whether the chronic treatment with L-Dopa altered the stress response inducing depressive-like behaviours. Adult male Wistar rats were treated orally during 24 days with LEBOCAR® - commercial formulation of L-Dopa (75 mg/day) and Carbidopa (7.5 mg/day) - in drinking water. Animals were stressed by immobilization during the last 9 days of treatment and depressive-like behaviours were assessed by the sucrose intake and forced swimming tests. Behavioural tests showed no signs of depressive-like behaviours in the LEBOCAR®-treated and/or stressed rats. We next explored the SAM axis reactivity. Circulating noradrenaline and adrenaline increased in rats treated with LEBOCAR® (p<0.05; HPLC). Also, the adrenals from stressed animals showed higher content of adrenaline (p<0.05). Then, we studied the HPA axis activity. Chronically stressed rats displayed a lower ACTH secretion (ELISA) and a downregulation of POMC expression (qPCR) in the anterior pituitary (p<0.05). In addition, LEBOCAR® treatment induced a reduction in serum ACTH and POMC levels (p<0.05). As expected, serum corticosterone (ELISA) enhanced under chronic stress, an effect that was inhibited by treatment with LEBOCAR® (p<0.05). Finally, pituitary PRL gene expression (qPCR) was downregulated by LEBOCAR® treatment with a more pronounced effect when rats were also stressed (p<0.05). Our results suggest that L-Dopa alters the neuroendocrine stress response enhancing SAM axis reactivity and reducing HPA axis activity and PRL expression. Oxford University Press 2021-05-03 /pmc/articles/PMC8089524/ http://dx.doi.org/10.1210/jendso/bvab048.136 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Adrenal
Orrillo, Santiago Jordi
Imsen, Mercedes
Lizarraga, Alfonsina
Romero, Ana Clara
De Fino, Fernanda
Zanoni, Milagros Peña
Machado, Alejandra Inés Abeledo
Zarate, Sandra Cristina
Ferraris, Jimena
Diaz, Graciela Susana
Pisera, Daniel
Effects of L-3,4-dihydroxyphenylalanine (L-Dopa) Treatment in the Neuroendocrine Response to Stress
title Effects of L-3,4-dihydroxyphenylalanine (L-Dopa) Treatment in the Neuroendocrine Response to Stress
title_full Effects of L-3,4-dihydroxyphenylalanine (L-Dopa) Treatment in the Neuroendocrine Response to Stress
title_fullStr Effects of L-3,4-dihydroxyphenylalanine (L-Dopa) Treatment in the Neuroendocrine Response to Stress
title_full_unstemmed Effects of L-3,4-dihydroxyphenylalanine (L-Dopa) Treatment in the Neuroendocrine Response to Stress
title_short Effects of L-3,4-dihydroxyphenylalanine (L-Dopa) Treatment in the Neuroendocrine Response to Stress
title_sort effects of l-3,4-dihydroxyphenylalanine (l-dopa) treatment in the neuroendocrine response to stress
topic Adrenal
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8089524/
http://dx.doi.org/10.1210/jendso/bvab048.136
work_keys_str_mv AT orrillosantiagojordi effectsofl34dihydroxyphenylalanineldopatreatmentintheneuroendocrineresponsetostress
AT imsenmercedes effectsofl34dihydroxyphenylalanineldopatreatmentintheneuroendocrineresponsetostress
AT lizarragaalfonsina effectsofl34dihydroxyphenylalanineldopatreatmentintheneuroendocrineresponsetostress
AT romeroanaclara effectsofl34dihydroxyphenylalanineldopatreatmentintheneuroendocrineresponsetostress
AT definofernanda effectsofl34dihydroxyphenylalanineldopatreatmentintheneuroendocrineresponsetostress
AT zanonimilagrospena effectsofl34dihydroxyphenylalanineldopatreatmentintheneuroendocrineresponsetostress
AT machadoalejandrainesabeledo effectsofl34dihydroxyphenylalanineldopatreatmentintheneuroendocrineresponsetostress
AT zaratesandracristina effectsofl34dihydroxyphenylalanineldopatreatmentintheneuroendocrineresponsetostress
AT ferrarisjimena effectsofl34dihydroxyphenylalanineldopatreatmentintheneuroendocrineresponsetostress
AT diazgracielasusana effectsofl34dihydroxyphenylalanineldopatreatmentintheneuroendocrineresponsetostress
AT piseradaniel effectsofl34dihydroxyphenylalanineldopatreatmentintheneuroendocrineresponsetostress