Cargando…

LGR4 and Its Extracellular Domain as Novel Regulators of ß-Cell Survival and Proliferation

Our lab has shown that RANK (Receptor activator of the NF-κB) by interacting with its ligand, RANKL, inhibits ß-cell proliferation and survival; which can be reversed by Osteoprotegerin (OPG). Recently, the G protein-coupled receptor LGR4 (leucine-rich repeat-containing G protein-coupled receptor 4)...

Descripción completa

Detalles Bibliográficos
Autores principales: Filipowska, Joanna K, Kondegowda, Nagesha G, Vasavada, Rupangi C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8089736/
http://dx.doi.org/10.1210/jendso/bvab048.656
Descripción
Sumario:Our lab has shown that RANK (Receptor activator of the NF-κB) by interacting with its ligand, RANKL, inhibits ß-cell proliferation and survival; which can be reversed by Osteoprotegerin (OPG). Recently, the G protein-coupled receptor LGR4 (leucine-rich repeat-containing G protein-coupled receptor 4), which binds R-spondin (RSPO), was identified as a novel receptor for RANKL in osteoclast precursor cells. Thus, RANKL can bind two distinct receptors, RANK and LGR4 in osteoclasts, leading to opposite effects on osteoclastogenesis. LGR4 is expressed in rodent and human ß-cells, but the role of this receptor in ß-cells remains unknown. We postulated that LGR4 through its interaction with RANKL is involved in regulating ß-cell survival and proliferation. Our data indicate expression of specific LGR4 family members, Lgr4, Rank, Rankl, is modulated by stressors, such as cytokines, ER stress, diabetes and aging, in INS1 cells, rodent and human islets. Knocking down Lgr4 in INS1 cells or rodent islets has no significant effect on ß-cell proliferation but is detrimental for ß-cell survival in basal and cytokine-stimulated conditions. We also propose that the soluble extracellular domain of LGR4 (LGR4-ECD), which binds to its ligands (RSPO/RANKL), holds therapeutic potential like OPG, by inhibiting the interaction between RANKL/RANK. At 200ng/ml LGR4-ECD significantly enhances young adult (8-12-week-old) and aged (1.y.o.) rodent ß-cell proliferation, as well as human ß-cell proliferation, in islets from not only control subjects (45±17 y.o.), but also with Type 2 diabetes (48±7 y.o.). Additionally, LGR4-ECD significantly promotes mouse and human ß-cell survival against cytokine-induced cell death. Future studies will determine the physiological role of LGR4 and the therapeutic potential of LGR4-ECD on the beta cell in vivo in basal conditions and in the setting of diabetes. Acknowledgements: Funding: JDRF postdoctoral fellowship # 3-PDF-2020-936-A-N to JF; Human Islets: IIDP