Cargando…
Involvement of BMP-15 in Glucocorticoid Actions on Ovarian Steroidogenesis by Rat Granulosa Cells
Glucocorticoid receptor (GR) are known to be expressed in the ovary and glucocorticoids are shown to exert direct effects on granulosa cell functions. In the clinical setting, menstrual abnormality, amenorrhea and hypermenorrhea can be shown in patients with glucocorticoid excess. On the other hand,...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8089904/ http://dx.doi.org/10.1210/jendso/bvab048.1561 |
Sumario: | Glucocorticoid receptor (GR) are known to be expressed in the ovary and glucocorticoids are shown to exert direct effects on granulosa cell functions. In the clinical setting, menstrual abnormality, amenorrhea and hypermenorrhea can be shown in patients with glucocorticoid excess. On the other hand, glucocorticoids can also be used for the treatment of PCOS with hyperandrogenism. However, the effects of glucocorticoids on the reproductive system have not been fully elucidated. In the present study, we investigated the influence of glucocorticoids on follicular steroidogenesis using primary culture of rat granulosa cells, by focusing on the ovarian bone morphogenetic proteins (BMPs) acting as a luteinizing inhibitor. Granulosa cells isolated from female immature rats were treated with follicle-stimulating hormone (FSH) in the presence of dexamethasone (Dex) in serum-free conditions. After treatment with Dex for 48 h, the changes of estradiol (E2) and progesterone (P4) production and cAMP synthesis induced by FSH treatments were measured by ELISA. Total RNAs of granulosa cells treated with FSH, Dex and BMPs were extracted and mRNA levels of steroidogenetic factors and enzymes, BMP receptors and Id-1 were quantified by real-time RT-PCR. Phosphorylation of Smad1/5/9 induced by BMPs was evaluated by Western blotting using cell lysates in the presence or absence of Dex. As a result, it was revealed that Dex treatment decreased FSH-induced E2 production by granulosa cells. In accordance with the steroid results, Dex suppressed FSH-induced P450arom mRNA expression as well as FSH-induced cAMP synthesis by granulosa cells. By contrast, Dex treatment augmented FSH-induced P4 production by granulosa cells in a concentration-dependent manner. Dex treatment was found to enhance basal and FSH-induced mRNA levels of P4-synthetic enzymes including P450scc and 3βHSD. Of note, Dex treatment activated the BMP target gene Id-1 transcription and Smad1/5/9 phosphorylation, in particular, induced by BMP-15 among various BMP ligands including BMP-2, -4, -6, -7, -9 and -15. It was also revealed that Dex treatment increased mRNA levels of ALK-6, a type-I receptor for BMP-15, and that BMP-15 treatment in turn upregulated GR mRNA levels expressed by granulosa cells. Given that BMP-15 acts as an inhibitor for P4 production by suppressing FSH-receptor actions, it was suggested that glucocorticoid is functionally linked to the enhancement of endogenous BMP-15, leading to the negative feedback toward the P4 overproduction induced by FSH and Dex in granulosa cells. Collectively, it was revealed that glucocorticoids elicit differential effects on the ovarian steroidogenesis of E2 and P4, in which GR and BMP-15 actions are mutually enhanced in granulosa cells. |
---|