Cargando…
The Role of TGFβ Ligands and Signalling on Insulin Resistance in Skeletal Muscle in Women With PCOS
Polycystic ovary syndrome (PCOS) is the most common female endocrinopathy affecting metabolic and reproductive health of 8–13% of reproductive-age women. Insulin resistance (IR) appears to underpin the pathophysiology of PCOS and is present in approximately 38–95% of women with PCOS. This underlying...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8090298/ http://dx.doi.org/10.1210/jendso/bvab048.906 |
Sumario: | Polycystic ovary syndrome (PCOS) is the most common female endocrinopathy affecting metabolic and reproductive health of 8–13% of reproductive-age women. Insulin resistance (IR) appears to underpin the pathophysiology of PCOS and is present in approximately 38–95% of women with PCOS. This underlying IR has been identified as unique from, but synergistic with, obesity-induced IR (1). Skeletal muscle accounts for up to 85% of whole-body insulin-stimulated glucose uptake; however, in PCOS this is reduced by about 27% when assessed by a euglycaemic-hyperinsulinaemic clamp (2). Interestingly, this reduced insulin-stimulated glucose uptake observed in skeletal muscle tissue is not retained in cultured myotubes (3), suggesting that in vivo environmental factors may play a role in this PCOS-specific IR. Yet, the molecular mechanisms regulating IR remain unclear (4). A potential environmental mechanism contributing to the development of peripheral IR may be the extracellular matrix remodelling and aberrant transforming growth factor beta (TGFβ) signalling. Previous work demonstrated that TGFβ superfamily ligands are involved in the increased collagen deposition and fibrotic tissue in the ovaries, and suggested that these ligands may be involved in the metabolic morbidity associated with PCOS (5). In this study, we investigated the effects of TGFβ1 (1, 5 ng/ml), and the Anti-Müllerian hormone (AMH; 5, 10, 30 ng/ml), a TGFβ superfamily ligand elevated in women with PCOS, as causal factors of IR in cultured myotubes from women with PCOS (n=5) and healthy controls (n=5). TGFβ1 did not have a significant effect on insulin signalling but induced expression of some ECM related genes and proteins, and increased glucose uptake via Smad2/3 signalling in myotubes from both groups. Conversely, AMH did not appear to activate the TGFβ/Smad signalling pathway and had no significant impact on insulin signalling or glucose uptake in any of the groups. In conclusion, these findings suggest that TGFβ1, but not AMH, may play a role in skeletal muscle ECM remodelling/fibrosis and glucose metabolism in PCOS but does not have a direct effect on insulin signalling pathway. Further research is required to elucidate its contribution to the development of in vivo skeletal muscle IR and broader impact in this syndrome. References: (1) Stepto et al., Hum Reprod 2013 Mar;28(3):777–784. (2) Cassar et al., Hum Reprod 2016 Nov;31(11):2619–2631. (3) Corbould et al., Am J Physiol-Endoc 2005 May;88(5):E1047-54. (4) Stepto et al., J Clin Endocrinol Metab, 2019 Nov 1;104(11):5372–5381. (5) Raja-Khan et al., Reprod Sci 2014 Jan;21(1):20–31. |
---|