Cargando…

Glucocorticoid Receptor Condensates Link DNA-Dependent Receptor Dimerization and Transcriptional Transactivation

The glucocorticoid receptor (GR) is a ligand-regulated transcription factor (TF) that controls the tissue- and gene-specific transactivation and transrepression of thousands of target genes. Distinct GR DNA binding sequences with activating or repressive activities have been identified, but how they...

Descripción completa

Detalles Bibliográficos
Autores principales: Frank, Filipp, Liu, Xu, Ortlund, Eric
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8090427/
http://dx.doi.org/10.1210/jendso/bvab048.1646
Descripción
Sumario:The glucocorticoid receptor (GR) is a ligand-regulated transcription factor (TF) that controls the tissue- and gene-specific transactivation and transrepression of thousands of target genes. Distinct GR DNA binding sequences with activating or repressive activities have been identified, but how they modulate transcription in opposite ways is not known. We show that GR forms phase-separated condensates that specifically concentrate known co-regulators via their intrinsically disordered regions (IDRs) in vitro. A combination of dynamic, multivalent (between IDRs) and specific, stable interactions (between LxxLL motifs and the GR ligand binding domain) control the degree of recruitment. Importantly, GR DNA-binding directs the selective partitioning of co-regulators within GR condensates such that activating DNAs cause enhanced recruitment of co-activators. Our work shows that condensation controls GR function by modulating co-regulator recruitment and provides a mechanism for the up- and down-regulation of GR target genes controlled by distinct DNA recognition elements.