Cargando…

Role of Growth Hormone in Ghrelin’s Metabolic Actions

Objective: Ghrelin regulates eating, body weight, and blood glucose. Upon binding to its receptor (growth hormone secretagogue receptor; GHSR), administered ghrelin increases food intake, body weight, and blood glucose. In contrast, blocking ghrelin lowers body weight and food intake. Also, mice tha...

Descripción completa

Detalles Bibliográficos
Autores principales: Gupta, Deepali, Varshney, Salil, Shankar, Kripa, Osborne-Lawrence, Sherri, Metzger, Nathan P, Zigman, Jeffrey Marc
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8090540/
http://dx.doi.org/10.1210/jendso/bvab048.1127
Descripción
Sumario:Objective: Ghrelin regulates eating, body weight, and blood glucose. Upon binding to its receptor (growth hormone secretagogue receptor; GHSR), administered ghrelin increases food intake, body weight, and blood glucose. In contrast, blocking ghrelin lowers body weight and food intake. Also, mice that lack ghrelin or GHSR develop life-threatening hypoglycemia when submitted to a prolonged caloric restriction protocol providing only 40% of usual daily calories. Although GHSR was first identified in the pituitary, ghrelin was first defined by its ability to stimulate GH secretion via GHSRs, GH replacement prevents hypoglycemia in ghrelin-KO mice undergoing prolonged caloric restriction, and GH is known to modulate body composition, relatively little attention has been devoted to the role of GH-secreting pituitary somatotrophs (“GH cells”) in ghrelin action. The objective here was to determine the requirement for GHSR-expressing GH cells in mediating ghrelin’s metabolic actions. Methods: Mice with GH cell-selective GHSR deletion were generated by crossing novel GH-IRES-Cre mice to novel floxed-GHSR mice. GH cell-selective GHSR knockout mice and three control littermate groups were studied. Plasma GH, food intake, and blood glucose were measured after ip or sc ghrelin administration. Blood glucose and plasma GH were measured over the course of a 15-d calorie restriction protocol providing only 40% of usual daily calories. Results: In mice with GH cell-selective GHSR deletion, ghrelin-induced GH secretion and food intake were attenuated (by 84.1% at 15 min and by 35.3% at 45 min, respectively) as compared to controls; ghrelin-induced blood glucose elevation was unchanged. Mice with GH cell-selective GHSR deletion exhibited an attenuated GH rise (by 76.8%) over the 15-d calorie restriction period, yet they nonetheless resisted life-threatening hypoglycemia which is observed in similarly-treated ghrelin-KO mice, GHSR-null mice, and mice with hepatocyte-selective GH receptor deletion. Conclusions: These results suggest that GH cell-expressed GHSRs are required for ghrelin’s acute orexigenic and GH secretory actions but are dispensable for ghrelin’s glucoregulatory actions, at least in the settings assessed here. Although GH cell-expressed GHSRs are required for the progressive GH elevations associated with prolonged calorie restriction, they are not required for ghrelin’s overall protective effects to block prolonged calorie restriction-associated hypoglycemia.