Cargando…

Sparse deep neural networks on imaging genetics for schizophrenia case–control classification

Deep learning methods hold strong promise for identifying biomarkers for clinical application. However, current approaches for psychiatric classification or prediction do not allow direct interpretation of original features. In the present study, we introduce a sparse deep neural network (DNN) appro...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Jiayu, Li, Xiang, Calhoun, Vince D., Turner, Jessica A., van Erp, Theo G. M., Wang, Lei, Andreassen, Ole A., Agartz, Ingrid, Westlye, Lars T., Jönsson, Erik, Ford, Judith M., Mathalon, Daniel H., Macciardi, Fabio, O'Leary, Daniel S., Liu, Jingyu, Ji, Shihao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8090768/
https://www.ncbi.nlm.nih.gov/pubmed/33724588
http://dx.doi.org/10.1002/hbm.25387
_version_ 1783687362927132672
author Chen, Jiayu
Li, Xiang
Calhoun, Vince D.
Turner, Jessica A.
van Erp, Theo G. M.
Wang, Lei
Andreassen, Ole A.
Agartz, Ingrid
Westlye, Lars T.
Jönsson, Erik
Ford, Judith M.
Mathalon, Daniel H.
Macciardi, Fabio
O'Leary, Daniel S.
Liu, Jingyu
Ji, Shihao
author_facet Chen, Jiayu
Li, Xiang
Calhoun, Vince D.
Turner, Jessica A.
van Erp, Theo G. M.
Wang, Lei
Andreassen, Ole A.
Agartz, Ingrid
Westlye, Lars T.
Jönsson, Erik
Ford, Judith M.
Mathalon, Daniel H.
Macciardi, Fabio
O'Leary, Daniel S.
Liu, Jingyu
Ji, Shihao
author_sort Chen, Jiayu
collection PubMed
description Deep learning methods hold strong promise for identifying biomarkers for clinical application. However, current approaches for psychiatric classification or prediction do not allow direct interpretation of original features. In the present study, we introduce a sparse deep neural network (DNN) approach to identify sparse and interpretable features for schizophrenia (SZ) case–control classification. An L (0)‐norm regularization is implemented on the input layer of the network for sparse feature selection, which can later be interpreted based on importance weights. We applied the proposed approach on a large multi‐study cohort with gray matter volume (GMV) and single nucleotide polymorphism (SNP) data for SZ classification. A total of 634 individuals served as training samples, and the classification model was evaluated for generalizability on three independent datasets of different scanning protocols (N = 394, 255, and 160, respectively). We examined the classification power of pure GMV features, as well as combined GMV and SNP features. Empirical experiments demonstrated that sparse DNN slightly outperformed independent component analysis + support vector machine (ICA + SVM) framework, and more effectively fused GMV and SNP features for SZ discrimination, with an average error rate of 28.98% on external data. The importance weights suggested that the DNN model prioritized to select frontal and superior temporal gyrus for SZ classification with high sparsity, with parietal regions further included with lower sparsity, echoing previous literature. The results validate the application of the proposed approach to SZ classification, and promise extended utility on other data modalities and traits which ultimately may result in clinically useful tools.
format Online
Article
Text
id pubmed-8090768
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-80907682021-05-10 Sparse deep neural networks on imaging genetics for schizophrenia case–control classification Chen, Jiayu Li, Xiang Calhoun, Vince D. Turner, Jessica A. van Erp, Theo G. M. Wang, Lei Andreassen, Ole A. Agartz, Ingrid Westlye, Lars T. Jönsson, Erik Ford, Judith M. Mathalon, Daniel H. Macciardi, Fabio O'Leary, Daniel S. Liu, Jingyu Ji, Shihao Hum Brain Mapp Research Articles Deep learning methods hold strong promise for identifying biomarkers for clinical application. However, current approaches for psychiatric classification or prediction do not allow direct interpretation of original features. In the present study, we introduce a sparse deep neural network (DNN) approach to identify sparse and interpretable features for schizophrenia (SZ) case–control classification. An L (0)‐norm regularization is implemented on the input layer of the network for sparse feature selection, which can later be interpreted based on importance weights. We applied the proposed approach on a large multi‐study cohort with gray matter volume (GMV) and single nucleotide polymorphism (SNP) data for SZ classification. A total of 634 individuals served as training samples, and the classification model was evaluated for generalizability on three independent datasets of different scanning protocols (N = 394, 255, and 160, respectively). We examined the classification power of pure GMV features, as well as combined GMV and SNP features. Empirical experiments demonstrated that sparse DNN slightly outperformed independent component analysis + support vector machine (ICA + SVM) framework, and more effectively fused GMV and SNP features for SZ discrimination, with an average error rate of 28.98% on external data. The importance weights suggested that the DNN model prioritized to select frontal and superior temporal gyrus for SZ classification with high sparsity, with parietal regions further included with lower sparsity, echoing previous literature. The results validate the application of the proposed approach to SZ classification, and promise extended utility on other data modalities and traits which ultimately may result in clinically useful tools. John Wiley & Sons, Inc. 2021-03-16 /pmc/articles/PMC8090768/ /pubmed/33724588 http://dx.doi.org/10.1002/hbm.25387 Text en © 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Research Articles
Chen, Jiayu
Li, Xiang
Calhoun, Vince D.
Turner, Jessica A.
van Erp, Theo G. M.
Wang, Lei
Andreassen, Ole A.
Agartz, Ingrid
Westlye, Lars T.
Jönsson, Erik
Ford, Judith M.
Mathalon, Daniel H.
Macciardi, Fabio
O'Leary, Daniel S.
Liu, Jingyu
Ji, Shihao
Sparse deep neural networks on imaging genetics for schizophrenia case–control classification
title Sparse deep neural networks on imaging genetics for schizophrenia case–control classification
title_full Sparse deep neural networks on imaging genetics for schizophrenia case–control classification
title_fullStr Sparse deep neural networks on imaging genetics for schizophrenia case–control classification
title_full_unstemmed Sparse deep neural networks on imaging genetics for schizophrenia case–control classification
title_short Sparse deep neural networks on imaging genetics for schizophrenia case–control classification
title_sort sparse deep neural networks on imaging genetics for schizophrenia case–control classification
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8090768/
https://www.ncbi.nlm.nih.gov/pubmed/33724588
http://dx.doi.org/10.1002/hbm.25387
work_keys_str_mv AT chenjiayu sparsedeepneuralnetworksonimaginggeneticsforschizophreniacasecontrolclassification
AT lixiang sparsedeepneuralnetworksonimaginggeneticsforschizophreniacasecontrolclassification
AT calhounvinced sparsedeepneuralnetworksonimaginggeneticsforschizophreniacasecontrolclassification
AT turnerjessicaa sparsedeepneuralnetworksonimaginggeneticsforschizophreniacasecontrolclassification
AT vanerptheogm sparsedeepneuralnetworksonimaginggeneticsforschizophreniacasecontrolclassification
AT wanglei sparsedeepneuralnetworksonimaginggeneticsforschizophreniacasecontrolclassification
AT andreassenolea sparsedeepneuralnetworksonimaginggeneticsforschizophreniacasecontrolclassification
AT agartzingrid sparsedeepneuralnetworksonimaginggeneticsforschizophreniacasecontrolclassification
AT westlyelarst sparsedeepneuralnetworksonimaginggeneticsforschizophreniacasecontrolclassification
AT jonssonerik sparsedeepneuralnetworksonimaginggeneticsforschizophreniacasecontrolclassification
AT fordjudithm sparsedeepneuralnetworksonimaginggeneticsforschizophreniacasecontrolclassification
AT mathalondanielh sparsedeepneuralnetworksonimaginggeneticsforschizophreniacasecontrolclassification
AT macciardifabio sparsedeepneuralnetworksonimaginggeneticsforschizophreniacasecontrolclassification
AT olearydaniels sparsedeepneuralnetworksonimaginggeneticsforschizophreniacasecontrolclassification
AT liujingyu sparsedeepneuralnetworksonimaginggeneticsforschizophreniacasecontrolclassification
AT jishihao sparsedeepneuralnetworksonimaginggeneticsforschizophreniacasecontrolclassification