Cargando…
Learning dynamic graph embeddings for accurate detection of cognitive state changes in functional brain networks
Mounting evidence shows that brain functions and cognitive states are dynamically changing even in the resting state rather than remaining at a single constant state. Due to the relatively small changes in BOLD (blood-oxygen-level-dependent) signals across tasks, it is difficult to detect the change...
Autores principales: | Lin, Yi, Yang, Defu, Hou, Jia, Yan, Chengang, Kim, Minjeong, Laurienti, Paul J, Wu, Guorong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8091140/ https://www.ncbi.nlm.nih.gov/pubmed/33545348 http://dx.doi.org/10.1016/j.neuroimage.2021.117791 |
Ejemplares similares
-
Exponential Random Graph Modeling for Complex Brain Networks
por: Simpson, Sean L., et al.
Publicado: (2011) -
An exploration of graph metric reproducibility in complex brain networks
por: Telesford, Qawi K., et al.
Publicado: (2013) -
Embedding Functional Brain Networks in Low Dimensional Spaces Using Manifold Learning Techniques
por: Casanova, Ramon, et al.
Publicado: (2021) -
Hyperbolic graph embedding of MEG brain networks to study brain alterations in individuals with subjective cognitive decline
por: Baker, Cole, et al.
Publicado: (2023) -
Survey on graph embeddings and their applications to machine learning problems on graphs
por: Makarov, Ilya, et al.
Publicado: (2021)