Cargando…
Discovery of key genes as novel biomarkers specifically associated with HPV-negative cervical cancer
Cervical cancer is a common female malignancy that is mainly caused by human papillomavirus (HPV) infection. However, the incidence of HPV-negative cervical cancer has shown an increasing trend in recent years. Because the mechanism of HPV-negative cervical cancer development is unclear, this study...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8091489/ https://www.ncbi.nlm.nih.gov/pubmed/33997099 http://dx.doi.org/10.1016/j.omtm.2021.03.026 |
Sumario: | Cervical cancer is a common female malignancy that is mainly caused by human papillomavirus (HPV) infection. However, the incidence of HPV-negative cervical cancer has shown an increasing trend in recent years. Because the mechanism of HPV-negative cervical cancer development is unclear, this study aims to find the pattern of differential gene expression in HPV-negative cervical cancer and verify the underlying potential mechanism. Differentially expressed genes were compared among HPV-positive cervical cancer, HPV-negative cervical cancer, and normal cervical tissues retrieved from TCGA. Subsequently, dysregulated differentially expressed genes specifically existed in HPV-negative cervical cancer tissues and HPV-negative cell lines were validated by qRT-PCR, western blotting, and immunohistochemical staining. We found seventeen highly expressed genes that were particularly associated with HPV-negative cervical cancer from analysis of TCGA database. Among the 17 novel genes, 7 genes (preferentially expressed antigen in melanoma [PRAME], HMGA2, ETS variant 4 [ETV4], MEX3A, TM7SF2, SLC19A1, and tweety-homologs 3 [TTYH3]) displayed significantly elevated expression in HPV-negative cervical cancer cells and HPV-negative cervical cancer tissues. Additionally, higher expression of MEX3A and TTYH3 was associated with a shorter overall survival of patients with HPV-negative cervical cancer. Our study implies that these seven genes are more likely to provide novel insights into the occurrence and progression of HPV-negative cervical cancer. |
---|