Cargando…
Schema: metric learning enables interpretable synthesis of heterogeneous single-cell modalities
A complete understanding of biological processes requires synthesizing information across heterogeneous modalities, such as age, disease status, or gene expression. Technological advances in single-cell profiling have enabled researchers to assay multiple modalities simultaneously. We present Schema...
Autores principales: | Singh, Rohit, Hie, Brian L., Narayan, Ashwin, Berger, Bonnie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8091541/ https://www.ncbi.nlm.nih.gov/pubmed/33941239 http://dx.doi.org/10.1186/s13059-021-02313-2 |
Ejemplares similares
-
Measuring and interpreting pervasive heterogeneity, poikilosis
por: Vihinen, Mauno
Publicado: (2021) -
SCA: recovering single-cell heterogeneity through information-based dimensionality reduction
por: DeMeo, Benjamin, et al.
Publicado: (2023) -
Ontology-aware deep learning enables ultrafast and interpretable source tracking among sub-million microbial community samples from hundreds of niches
por: Zha, Yuguo, et al.
Publicado: (2022) -
MOCHI enables discovery of heterogeneous interactome modules in 3D nucleome
por: Tian, Dechao, et al.
Publicado: (2020) -
scINSIGHT for interpreting single-cell gene expression from biologically heterogeneous data
por: Qian, Kun, et al.
Publicado: (2022)