Cargando…

Conversion of stem cells from apical papilla into endothelial cells by small molecules and growth factors

OBJECTIVES: Recently, a new strategy has been developed to directly reprogram one cell type towards another targeted cell type using small molecule compounds. Human fibroblasts have been chemically reprogrammed into neuronal cells, Schwann cells and cardiomyocyte-like cells by different small molecu...

Descripción completa

Detalles Bibliográficos
Autores principales: Yi, Baicheng, Ding, Tian, Jiang, Shan, Gong, Ting, Chopra, Hitesh, Sha, Ou, Dissanayaka, Waruna Lakmal, Ge, Shaohua, Zhang, Chengfei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8091697/
https://www.ncbi.nlm.nih.gov/pubmed/33941255
http://dx.doi.org/10.1186/s13287-021-02350-5
Descripción
Sumario:OBJECTIVES: Recently, a new strategy has been developed to directly reprogram one cell type towards another targeted cell type using small molecule compounds. Human fibroblasts have been chemically reprogrammed into neuronal cells, Schwann cells and cardiomyocyte-like cells by different small molecule combinations. This study aimed to explore whether stem cells from apical papilla (SCAP) could be reprogrammed into endothelial cells (ECs) using the same strategy. MATERIALS AND METHODS: The expression level of endothelial-specific genes and proteins after chemical induction of SCAP was assessed by RT-PCR, western blotting, flow cytometry and immunofluorescence. The in vitro functions of SCAP-derived chemical-induced endothelial cells (SCAP-ECs) were evaluated by tube-like structure formation assay, acetylated low-density lipoprotein (ac-LDL) uptake and NO secretion detection. The proliferation and the migration ability of SCAP-ECs were evaluated by CCK-8 and Transwell assay. LPS stimulation was used to mimic the inflammatory environment in demonstrating the ability of SCAP-ECs to express adhesion molecules. The in vivo Matrigel plug angiogenesis assay was performed to assess the function of SCAP-ECs in generating vascular structures using the immune-deficient mouse model. RESULTS: SCAP-ECs expressed upregulated endothelial-specific genes and proteins; displayed endothelial transcriptional networks; exhibited the ability to form functional tubular-like structures, uptake ac-LDL and secrete NO in vitro; and contributed to generate blood vessels in vivo. The SCAP-ECs could also express adhesion molecules in the pro-inflammatory environment and have a similar migration and proliferation ability as HUVECs. CONCLUSIONS: Our study demonstrates that the set of small molecules and growth factors could significantly promote endothelial transdifferentiation of SCAP, which provides a promising candidate cell source for vascular engineering and treatment of ischemic diseases. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13287-021-02350-5.