Cargando…
A maximum flow-based network approach for identification of stable noncoding biomarkers associated with the multigenic neurological condition, autism
BACKGROUND: Machine learning approaches for predicting disease risk from high-dimensional whole genome sequence (WGS) data often result in unstable models that can be difficult to interpret, limiting the identification of putative sets of biomarkers. Here, we design and validate a graph-based method...
Autores principales: | Varma, Maya, Paskov, Kelley M., Chrisman, Brianna S., Sun, Min Woo, Jung, Jae-Yoon, Stockham, Nate T., Washington, Peter Y., Wall, Dennis P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8091705/ https://www.ncbi.nlm.nih.gov/pubmed/33941233 http://dx.doi.org/10.1186/s13040-021-00262-x |
Ejemplares similares
-
Outgroup Machine Learning Approach Identifies Single Nucleotide Variants in Noncoding DNA Associated with Autism Spectrum Disorder
por: Varma, Maya, et al.
Publicado: (2019) -
Identification of Social Engagement Indicators Associated With Autism Spectrum Disorder Using a Game-Based Mobile App: Comparative Study of Gaze Fixation and Visual Scanning Methods
por: Varma, Maya, et al.
Publicado: (2022) -
Estimating sequencing error rates using families
por: Paskov, Kelley, et al.
Publicado: (2021) -
Crowd annotations can approximate clinical autism impressions from short home videos with privacy protections
por: Washington, Peter, et al.
Publicado: (2022) -
The human “contaminome”: bacterial, viral, and computational contamination in whole genome sequences from 1000 families
por: Chrisman, Brianna, et al.
Publicado: (2022)