Cargando…

Correcting signal biases and detecting regulatory elements in STARR-seq data

High-throughput reporter assays such as self-transcribing active regulatory region sequencing (STARR-seq) have made it possible to measure regulatory element activity across the entire human genome at once. The resulting data, however, present substantial analytical challenges. Here, we identify tec...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Young-Sook, Johnson, Graham D., Seo, Jungkyun, Barrera, Alejandro, Cowart, Thomas N., Majoros, William H., Ochoa, Alejandro, Allen, Andrew S., Reddy, Timothy E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8092017/
https://www.ncbi.nlm.nih.gov/pubmed/33722938
http://dx.doi.org/10.1101/gr.269209.120
_version_ 1783687583804424192
author Kim, Young-Sook
Johnson, Graham D.
Seo, Jungkyun
Barrera, Alejandro
Cowart, Thomas N.
Majoros, William H.
Ochoa, Alejandro
Allen, Andrew S.
Reddy, Timothy E.
author_facet Kim, Young-Sook
Johnson, Graham D.
Seo, Jungkyun
Barrera, Alejandro
Cowart, Thomas N.
Majoros, William H.
Ochoa, Alejandro
Allen, Andrew S.
Reddy, Timothy E.
author_sort Kim, Young-Sook
collection PubMed
description High-throughput reporter assays such as self-transcribing active regulatory region sequencing (STARR-seq) have made it possible to measure regulatory element activity across the entire human genome at once. The resulting data, however, present substantial analytical challenges. Here, we identify technical biases that explain most of the variance in STARR-seq data. We then develop a statistical model to correct those biases and to improve detection of regulatory elements. This approach substantially improves precision and recall over current methods, improves detection of both activating and repressive regulatory elements, and controls for false discoveries despite strong local correlations in signal.
format Online
Article
Text
id pubmed-8092017
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Cold Spring Harbor Laboratory Press
record_format MEDLINE/PubMed
spelling pubmed-80920172021-05-14 Correcting signal biases and detecting regulatory elements in STARR-seq data Kim, Young-Sook Johnson, Graham D. Seo, Jungkyun Barrera, Alejandro Cowart, Thomas N. Majoros, William H. Ochoa, Alejandro Allen, Andrew S. Reddy, Timothy E. Genome Res Method High-throughput reporter assays such as self-transcribing active regulatory region sequencing (STARR-seq) have made it possible to measure regulatory element activity across the entire human genome at once. The resulting data, however, present substantial analytical challenges. Here, we identify technical biases that explain most of the variance in STARR-seq data. We then develop a statistical model to correct those biases and to improve detection of regulatory elements. This approach substantially improves precision and recall over current methods, improves detection of both activating and repressive regulatory elements, and controls for false discoveries despite strong local correlations in signal. Cold Spring Harbor Laboratory Press 2021-05 /pmc/articles/PMC8092017/ /pubmed/33722938 http://dx.doi.org/10.1101/gr.269209.120 Text en © 2021 Kim et al.; Published by Cold Spring Harbor Laboratory Press https://creativecommons.org/licenses/by-nc/4.0/This article, published in Genome Research, is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) .
spellingShingle Method
Kim, Young-Sook
Johnson, Graham D.
Seo, Jungkyun
Barrera, Alejandro
Cowart, Thomas N.
Majoros, William H.
Ochoa, Alejandro
Allen, Andrew S.
Reddy, Timothy E.
Correcting signal biases and detecting regulatory elements in STARR-seq data
title Correcting signal biases and detecting regulatory elements in STARR-seq data
title_full Correcting signal biases and detecting regulatory elements in STARR-seq data
title_fullStr Correcting signal biases and detecting regulatory elements in STARR-seq data
title_full_unstemmed Correcting signal biases and detecting regulatory elements in STARR-seq data
title_short Correcting signal biases and detecting regulatory elements in STARR-seq data
title_sort correcting signal biases and detecting regulatory elements in starr-seq data
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8092017/
https://www.ncbi.nlm.nih.gov/pubmed/33722938
http://dx.doi.org/10.1101/gr.269209.120
work_keys_str_mv AT kimyoungsook correctingsignalbiasesanddetectingregulatoryelementsinstarrseqdata
AT johnsongrahamd correctingsignalbiasesanddetectingregulatoryelementsinstarrseqdata
AT seojungkyun correctingsignalbiasesanddetectingregulatoryelementsinstarrseqdata
AT barreraalejandro correctingsignalbiasesanddetectingregulatoryelementsinstarrseqdata
AT cowartthomasn correctingsignalbiasesanddetectingregulatoryelementsinstarrseqdata
AT majoroswilliamh correctingsignalbiasesanddetectingregulatoryelementsinstarrseqdata
AT ochoaalejandro correctingsignalbiasesanddetectingregulatoryelementsinstarrseqdata
AT allenandrews correctingsignalbiasesanddetectingregulatoryelementsinstarrseqdata
AT reddytimothye correctingsignalbiasesanddetectingregulatoryelementsinstarrseqdata