Cargando…
Correcting signal biases and detecting regulatory elements in STARR-seq data
High-throughput reporter assays such as self-transcribing active regulatory region sequencing (STARR-seq) have made it possible to measure regulatory element activity across the entire human genome at once. The resulting data, however, present substantial analytical challenges. Here, we identify tec...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8092017/ https://www.ncbi.nlm.nih.gov/pubmed/33722938 http://dx.doi.org/10.1101/gr.269209.120 |
_version_ | 1783687583804424192 |
---|---|
author | Kim, Young-Sook Johnson, Graham D. Seo, Jungkyun Barrera, Alejandro Cowart, Thomas N. Majoros, William H. Ochoa, Alejandro Allen, Andrew S. Reddy, Timothy E. |
author_facet | Kim, Young-Sook Johnson, Graham D. Seo, Jungkyun Barrera, Alejandro Cowart, Thomas N. Majoros, William H. Ochoa, Alejandro Allen, Andrew S. Reddy, Timothy E. |
author_sort | Kim, Young-Sook |
collection | PubMed |
description | High-throughput reporter assays such as self-transcribing active regulatory region sequencing (STARR-seq) have made it possible to measure regulatory element activity across the entire human genome at once. The resulting data, however, present substantial analytical challenges. Here, we identify technical biases that explain most of the variance in STARR-seq data. We then develop a statistical model to correct those biases and to improve detection of regulatory elements. This approach substantially improves precision and recall over current methods, improves detection of both activating and repressive regulatory elements, and controls for false discoveries despite strong local correlations in signal. |
format | Online Article Text |
id | pubmed-8092017 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Cold Spring Harbor Laboratory Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-80920172021-05-14 Correcting signal biases and detecting regulatory elements in STARR-seq data Kim, Young-Sook Johnson, Graham D. Seo, Jungkyun Barrera, Alejandro Cowart, Thomas N. Majoros, William H. Ochoa, Alejandro Allen, Andrew S. Reddy, Timothy E. Genome Res Method High-throughput reporter assays such as self-transcribing active regulatory region sequencing (STARR-seq) have made it possible to measure regulatory element activity across the entire human genome at once. The resulting data, however, present substantial analytical challenges. Here, we identify technical biases that explain most of the variance in STARR-seq data. We then develop a statistical model to correct those biases and to improve detection of regulatory elements. This approach substantially improves precision and recall over current methods, improves detection of both activating and repressive regulatory elements, and controls for false discoveries despite strong local correlations in signal. Cold Spring Harbor Laboratory Press 2021-05 /pmc/articles/PMC8092017/ /pubmed/33722938 http://dx.doi.org/10.1101/gr.269209.120 Text en © 2021 Kim et al.; Published by Cold Spring Harbor Laboratory Press https://creativecommons.org/licenses/by-nc/4.0/This article, published in Genome Research, is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) . |
spellingShingle | Method Kim, Young-Sook Johnson, Graham D. Seo, Jungkyun Barrera, Alejandro Cowart, Thomas N. Majoros, William H. Ochoa, Alejandro Allen, Andrew S. Reddy, Timothy E. Correcting signal biases and detecting regulatory elements in STARR-seq data |
title | Correcting signal biases and detecting regulatory elements in STARR-seq data |
title_full | Correcting signal biases and detecting regulatory elements in STARR-seq data |
title_fullStr | Correcting signal biases and detecting regulatory elements in STARR-seq data |
title_full_unstemmed | Correcting signal biases and detecting regulatory elements in STARR-seq data |
title_short | Correcting signal biases and detecting regulatory elements in STARR-seq data |
title_sort | correcting signal biases and detecting regulatory elements in starr-seq data |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8092017/ https://www.ncbi.nlm.nih.gov/pubmed/33722938 http://dx.doi.org/10.1101/gr.269209.120 |
work_keys_str_mv | AT kimyoungsook correctingsignalbiasesanddetectingregulatoryelementsinstarrseqdata AT johnsongrahamd correctingsignalbiasesanddetectingregulatoryelementsinstarrseqdata AT seojungkyun correctingsignalbiasesanddetectingregulatoryelementsinstarrseqdata AT barreraalejandro correctingsignalbiasesanddetectingregulatoryelementsinstarrseqdata AT cowartthomasn correctingsignalbiasesanddetectingregulatoryelementsinstarrseqdata AT majoroswilliamh correctingsignalbiasesanddetectingregulatoryelementsinstarrseqdata AT ochoaalejandro correctingsignalbiasesanddetectingregulatoryelementsinstarrseqdata AT allenandrews correctingsignalbiasesanddetectingregulatoryelementsinstarrseqdata AT reddytimothye correctingsignalbiasesanddetectingregulatoryelementsinstarrseqdata |