Cargando…
Image Compositing for Segmentation of Surgical Tools Without Manual Annotations
Producing manual, pixel-accurate, image segmentation labels is tedious and time-consuming. This is often a rate-limiting factor when large amounts of labeled images are required, such as for training deep convolutional networks for instrument-background segmentation in surgical scenes. No large data...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8092331/ https://www.ncbi.nlm.nih.gov/pubmed/33556005 http://dx.doi.org/10.1109/TMI.2021.3057884 |
Ejemplares similares
-
ArtSeg—Artifact segmentation and removal in brightfield cell microscopy images without manual pixel-level annotations
por: Ali, Mohammed A. S., et al.
Publicado: (2022) -
Training a deep learning model for single-cell segmentation without manual annotation
por: Din, Nizam Ud, et al.
Publicado: (2021) -
A convolutional neural network for segmentation of yeast cells without manual training annotations
por: Kruitbosch, Herbert T, et al.
Publicado: (2021) -
A deep learning segmentation strategy that minimizes the amount of manually annotated images
por: Pécot, Thierry, et al.
Publicado: (2022) -
VAST (Volume Annotation and Segmentation Tool): Efficient Manual and Semi-Automatic Labeling of Large 3D Image Stacks
por: Berger, Daniel R., et al.
Publicado: (2018)