Cargando…

Antagonistic activities of cotranscriptional regulators within an early developmental window set FLC expression level

Quantitative variation in expression of the Arabidopsis floral repressor FLC influences whether plants overwinter before flowering, or have a rapid cycling habit enabling multiple generations a year. Genetic analysis has identified activators and repressors of FLC expression but how they interact to...

Descripción completa

Detalles Bibliográficos
Autores principales: Schon, Michael, Baxter, Catherine, Xu, Congyao, Enugutti, Balaji, Nodine, Michael D., Dean, Caroline
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8092400/
https://www.ncbi.nlm.nih.gov/pubmed/33879620
http://dx.doi.org/10.1073/pnas.2102753118
Descripción
Sumario:Quantitative variation in expression of the Arabidopsis floral repressor FLC influences whether plants overwinter before flowering, or have a rapid cycling habit enabling multiple generations a year. Genetic analysis has identified activators and repressors of FLC expression but how they interact to set expression level is poorly understood. Here, we show that antagonistic functions of the FLC activator FRIGIDA (FRI) and the repressor FCA, at a specific stage of embryo development, determine FLC expression and flowering. FRI antagonizes an FCA-induced proximal polyadenylation to increase FLC expression and delay flowering. Sector analysis shows that FRI activity during the early heart stage of embryo development maximally delays flowering. Opposing functions of cotranscriptional regulators during an early embryonic developmental window thus set FLC expression levels and determine flowering time.