Cargando…
A urinary peptidomic profile predicts outcome in SARS-CoV-2-infected patients
BACKGROUND: COVID-19 prediction models based on clinical characteristics, routine biochemistry and imaging, have been developed, but little is known on proteomic markers reflecting the molecular pathophysiology of disease progression. METHODS: The multicentre (six European study sites) Prospective V...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8092440/ https://www.ncbi.nlm.nih.gov/pubmed/33969282 http://dx.doi.org/10.1016/j.eclinm.2021.100883 |
_version_ | 1783687656680456192 |
---|---|
author | Wendt, Ralph Thijs, Lutgarde Kalbitz, Sven Mischak, Harald Siwy, Justyna Raad, Julia Metzger, Jochen Neuhaus, Barbara Leyen, Heiko von der Dudoignon, Emmanuel Mebazaa, Alexandre Spasovski, Goce Milenkova, Mimoza Canevska-Talevska, Aleksandra Czerwieńska, Beata Wiecek, Andrzej Peters, Björn Nilsson, Åsa Schwab, Matthias Rothfuss, Katja Lübbert, Christoph Staessen, Jan A. Beige, Joachim |
author_facet | Wendt, Ralph Thijs, Lutgarde Kalbitz, Sven Mischak, Harald Siwy, Justyna Raad, Julia Metzger, Jochen Neuhaus, Barbara Leyen, Heiko von der Dudoignon, Emmanuel Mebazaa, Alexandre Spasovski, Goce Milenkova, Mimoza Canevska-Talevska, Aleksandra Czerwieńska, Beata Wiecek, Andrzej Peters, Björn Nilsson, Åsa Schwab, Matthias Rothfuss, Katja Lübbert, Christoph Staessen, Jan A. Beige, Joachim |
author_sort | Wendt, Ralph |
collection | PubMed |
description | BACKGROUND: COVID-19 prediction models based on clinical characteristics, routine biochemistry and imaging, have been developed, but little is known on proteomic markers reflecting the molecular pathophysiology of disease progression. METHODS: The multicentre (six European study sites) Prospective Validation of a Proteomic Urine Test for Early and Accurate Prognosis of Critical Course Complications in Patients with SARS-CoV-2 Infection Study (Crit-COV-U) is recruiting consecutive patients (≥ 18 years) with PCR-confirmed SARS-CoV-2 infection. A urinary proteomic biomarker (COV50) developed by capillary-electrophoresis-mass spectrometry (CE-MS) technology, comprising 50 sequenced peptides and identifying the parental proteins, was evaluated in 228 patients (derivation cohort) with replication in 99 patients (validation cohort). Death and progression along the World Health Organization (WHO) Clinical Progression Scale were assessed up to 21 days after the initial PCR test. Statistical methods included logistic regression, receiver operating curve (ROC) analysis and comparison of the area under the curve (AUC). FINDINGS: In the derivation cohort, 23 patients died, and 48 developed worse WHO scores. The odds ratios (OR) for death per 1 standard deviation (SD) increment in COV50 were 3·52 (95% CI, 2·02–6·13, p <0·0001) unadjusted and 2·73 (1·25–5·95, p = 0·012) adjusted for sex, age, baseline WHO score, body mass index (BMI) and comorbidities. For WHO scale progression, the corresponding OR were 2·63 (1·80–3·85, p<0·0001) and 3·38 (1·85–6·17, p<0·0001), respectively. The area under the curve (AUC) for COV50 as a continuously distributed variable was 0·80 (0·72–0·88) for mortality and 0·74 (0·66–0·81) for worsening WHO score. The optimised COV50 thresholds for mortality and worsening WHO score were 0·47 and 0·04 with sensitivity/specificity of 87·0 (74·6%) and 77·1 (63·9%), respectively. On top of covariates, COV50 improved the AUC, albeit borderline for death, from 0·78 to 0·82 (p = 0·11) and 0·84 (p = 0·052) for mortality and from 0·68 to 0·78 (p = 0·0097) and 0·75 (p = 0·021) for worsening WHO score. The validation cohort findings were confirmatory. INTERPRETATION: This first CRIT-COV-U report proves the concept that urinary proteomic profiling generates biomarkers indicating adverse COVID-19 outcomes, even at an early disease stage, including WHO stages 1–3. These findings need to be consolidated in an upcoming final dataset. FUNDING: The German Federal Ministry of Health funded the study. |
format | Online Article Text |
id | pubmed-8092440 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-80924402021-05-03 A urinary peptidomic profile predicts outcome in SARS-CoV-2-infected patients Wendt, Ralph Thijs, Lutgarde Kalbitz, Sven Mischak, Harald Siwy, Justyna Raad, Julia Metzger, Jochen Neuhaus, Barbara Leyen, Heiko von der Dudoignon, Emmanuel Mebazaa, Alexandre Spasovski, Goce Milenkova, Mimoza Canevska-Talevska, Aleksandra Czerwieńska, Beata Wiecek, Andrzej Peters, Björn Nilsson, Åsa Schwab, Matthias Rothfuss, Katja Lübbert, Christoph Staessen, Jan A. Beige, Joachim EClinicalMedicine Research Paper BACKGROUND: COVID-19 prediction models based on clinical characteristics, routine biochemistry and imaging, have been developed, but little is known on proteomic markers reflecting the molecular pathophysiology of disease progression. METHODS: The multicentre (six European study sites) Prospective Validation of a Proteomic Urine Test for Early and Accurate Prognosis of Critical Course Complications in Patients with SARS-CoV-2 Infection Study (Crit-COV-U) is recruiting consecutive patients (≥ 18 years) with PCR-confirmed SARS-CoV-2 infection. A urinary proteomic biomarker (COV50) developed by capillary-electrophoresis-mass spectrometry (CE-MS) technology, comprising 50 sequenced peptides and identifying the parental proteins, was evaluated in 228 patients (derivation cohort) with replication in 99 patients (validation cohort). Death and progression along the World Health Organization (WHO) Clinical Progression Scale were assessed up to 21 days after the initial PCR test. Statistical methods included logistic regression, receiver operating curve (ROC) analysis and comparison of the area under the curve (AUC). FINDINGS: In the derivation cohort, 23 patients died, and 48 developed worse WHO scores. The odds ratios (OR) for death per 1 standard deviation (SD) increment in COV50 were 3·52 (95% CI, 2·02–6·13, p <0·0001) unadjusted and 2·73 (1·25–5·95, p = 0·012) adjusted for sex, age, baseline WHO score, body mass index (BMI) and comorbidities. For WHO scale progression, the corresponding OR were 2·63 (1·80–3·85, p<0·0001) and 3·38 (1·85–6·17, p<0·0001), respectively. The area under the curve (AUC) for COV50 as a continuously distributed variable was 0·80 (0·72–0·88) for mortality and 0·74 (0·66–0·81) for worsening WHO score. The optimised COV50 thresholds for mortality and worsening WHO score were 0·47 and 0·04 with sensitivity/specificity of 87·0 (74·6%) and 77·1 (63·9%), respectively. On top of covariates, COV50 improved the AUC, albeit borderline for death, from 0·78 to 0·82 (p = 0·11) and 0·84 (p = 0·052) for mortality and from 0·68 to 0·78 (p = 0·0097) and 0·75 (p = 0·021) for worsening WHO score. The validation cohort findings were confirmatory. INTERPRETATION: This first CRIT-COV-U report proves the concept that urinary proteomic profiling generates biomarkers indicating adverse COVID-19 outcomes, even at an early disease stage, including WHO stages 1–3. These findings need to be consolidated in an upcoming final dataset. FUNDING: The German Federal Ministry of Health funded the study. Elsevier 2021-05-03 /pmc/articles/PMC8092440/ /pubmed/33969282 http://dx.doi.org/10.1016/j.eclinm.2021.100883 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Paper Wendt, Ralph Thijs, Lutgarde Kalbitz, Sven Mischak, Harald Siwy, Justyna Raad, Julia Metzger, Jochen Neuhaus, Barbara Leyen, Heiko von der Dudoignon, Emmanuel Mebazaa, Alexandre Spasovski, Goce Milenkova, Mimoza Canevska-Talevska, Aleksandra Czerwieńska, Beata Wiecek, Andrzej Peters, Björn Nilsson, Åsa Schwab, Matthias Rothfuss, Katja Lübbert, Christoph Staessen, Jan A. Beige, Joachim A urinary peptidomic profile predicts outcome in SARS-CoV-2-infected patients |
title | A urinary peptidomic profile predicts outcome in SARS-CoV-2-infected patients |
title_full | A urinary peptidomic profile predicts outcome in SARS-CoV-2-infected patients |
title_fullStr | A urinary peptidomic profile predicts outcome in SARS-CoV-2-infected patients |
title_full_unstemmed | A urinary peptidomic profile predicts outcome in SARS-CoV-2-infected patients |
title_short | A urinary peptidomic profile predicts outcome in SARS-CoV-2-infected patients |
title_sort | urinary peptidomic profile predicts outcome in sars-cov-2-infected patients |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8092440/ https://www.ncbi.nlm.nih.gov/pubmed/33969282 http://dx.doi.org/10.1016/j.eclinm.2021.100883 |
work_keys_str_mv | AT wendtralph aurinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT thijslutgarde aurinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT kalbitzsven aurinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT mischakharald aurinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT siwyjustyna aurinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT raadjulia aurinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT metzgerjochen aurinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT neuhausbarbara aurinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT leyenheikovonder aurinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT dudoignonemmanuel aurinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT mebazaaalexandre aurinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT spasovskigoce aurinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT milenkovamimoza aurinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT canevskatalevskaaleksandra aurinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT czerwienskabeata aurinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT wiecekandrzej aurinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT petersbjorn aurinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT nilssonasa aurinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT schwabmatthias aurinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT rothfusskatja aurinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT lubbertchristoph aurinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT staessenjana aurinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT beigejoachim aurinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT aurinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT wendtralph urinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT thijslutgarde urinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT kalbitzsven urinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT mischakharald urinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT siwyjustyna urinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT raadjulia urinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT metzgerjochen urinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT neuhausbarbara urinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT leyenheikovonder urinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT dudoignonemmanuel urinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT mebazaaalexandre urinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT spasovskigoce urinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT milenkovamimoza urinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT canevskatalevskaaleksandra urinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT czerwienskabeata urinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT wiecekandrzej urinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT petersbjorn urinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT nilssonasa urinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT schwabmatthias urinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT rothfusskatja urinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT lubbertchristoph urinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT staessenjana urinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT beigejoachim urinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients AT urinarypeptidomicprofilepredictsoutcomeinsarscov2infectedpatients |