Cargando…
The decomposition process and nutrient release of invasive plant litter regulated by nutrient enrichment and water level change
Wetlands are vulnerable to plant invasions and the decomposition of invasive plant litter could make impacts on the ecosystem services of wetlands including nutrient cycle and carbon sequestration. However, few studies have explored the effects of nutrient enrichment and water level change on the de...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8092768/ https://www.ncbi.nlm.nih.gov/pubmed/33939720 http://dx.doi.org/10.1371/journal.pone.0250880 |
_version_ | 1783687690773856256 |
---|---|
author | Yang, Ruirui Dong, Junyu Li, Changchao Wang, Lifei Quan, Quan Liu, Jian |
author_facet | Yang, Ruirui Dong, Junyu Li, Changchao Wang, Lifei Quan, Quan Liu, Jian |
author_sort | Yang, Ruirui |
collection | PubMed |
description | Wetlands are vulnerable to plant invasions and the decomposition of invasive plant litter could make impacts on the ecosystem services of wetlands including nutrient cycle and carbon sequestration. However, few studies have explored the effects of nutrient enrichment and water level change on the decomposition of invasive plant litter. In this study, we conducted a control experiment using the litterbag method to compare the decomposition rates and nutrient release in the litter of an invasive plant Alternanthera philoxeroides in three water levels and two nutrient enrichment treatments. This study found that the water level change and nutrient enrichment showed significant effects on the litter decomposition and nutrient dynamic of A. philoxeroides. The increase of water level significantly reduced the decomposition rate and nutrient release of litter in the nutrient control treatment, whereas no clear relationship was observed in the nutrient enrichment treatment, indicating that the effect of water level change on litter decomposition might be affected by nutrient enrichment. At the late stage of decomposition, the increase of phosphorus (P) concentration and the decrease of the ratio of carbon to P suggested that the decomposition of invasive plant litter was limited by P. Our results suggest that controlling P enrichment in water bodies is essential for the management of invasive plant and carbon sequestration of wetlands. In addition, the new index we proposed could provide a basis for quantifying the impact of invasive plant litter decomposition on carbon cycle in wetlands. |
format | Online Article Text |
id | pubmed-8092768 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-80927682021-05-07 The decomposition process and nutrient release of invasive plant litter regulated by nutrient enrichment and water level change Yang, Ruirui Dong, Junyu Li, Changchao Wang, Lifei Quan, Quan Liu, Jian PLoS One Research Article Wetlands are vulnerable to plant invasions and the decomposition of invasive plant litter could make impacts on the ecosystem services of wetlands including nutrient cycle and carbon sequestration. However, few studies have explored the effects of nutrient enrichment and water level change on the decomposition of invasive plant litter. In this study, we conducted a control experiment using the litterbag method to compare the decomposition rates and nutrient release in the litter of an invasive plant Alternanthera philoxeroides in three water levels and two nutrient enrichment treatments. This study found that the water level change and nutrient enrichment showed significant effects on the litter decomposition and nutrient dynamic of A. philoxeroides. The increase of water level significantly reduced the decomposition rate and nutrient release of litter in the nutrient control treatment, whereas no clear relationship was observed in the nutrient enrichment treatment, indicating that the effect of water level change on litter decomposition might be affected by nutrient enrichment. At the late stage of decomposition, the increase of phosphorus (P) concentration and the decrease of the ratio of carbon to P suggested that the decomposition of invasive plant litter was limited by P. Our results suggest that controlling P enrichment in water bodies is essential for the management of invasive plant and carbon sequestration of wetlands. In addition, the new index we proposed could provide a basis for quantifying the impact of invasive plant litter decomposition on carbon cycle in wetlands. Public Library of Science 2021-05-03 /pmc/articles/PMC8092768/ /pubmed/33939720 http://dx.doi.org/10.1371/journal.pone.0250880 Text en © 2021 Yang et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Yang, Ruirui Dong, Junyu Li, Changchao Wang, Lifei Quan, Quan Liu, Jian The decomposition process and nutrient release of invasive plant litter regulated by nutrient enrichment and water level change |
title | The decomposition process and nutrient release of invasive plant litter regulated by nutrient enrichment and water level change |
title_full | The decomposition process and nutrient release of invasive plant litter regulated by nutrient enrichment and water level change |
title_fullStr | The decomposition process and nutrient release of invasive plant litter regulated by nutrient enrichment and water level change |
title_full_unstemmed | The decomposition process and nutrient release of invasive plant litter regulated by nutrient enrichment and water level change |
title_short | The decomposition process and nutrient release of invasive plant litter regulated by nutrient enrichment and water level change |
title_sort | decomposition process and nutrient release of invasive plant litter regulated by nutrient enrichment and water level change |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8092768/ https://www.ncbi.nlm.nih.gov/pubmed/33939720 http://dx.doi.org/10.1371/journal.pone.0250880 |
work_keys_str_mv | AT yangruirui thedecompositionprocessandnutrientreleaseofinvasiveplantlitterregulatedbynutrientenrichmentandwaterlevelchange AT dongjunyu thedecompositionprocessandnutrientreleaseofinvasiveplantlitterregulatedbynutrientenrichmentandwaterlevelchange AT lichangchao thedecompositionprocessandnutrientreleaseofinvasiveplantlitterregulatedbynutrientenrichmentandwaterlevelchange AT wanglifei thedecompositionprocessandnutrientreleaseofinvasiveplantlitterregulatedbynutrientenrichmentandwaterlevelchange AT quanquan thedecompositionprocessandnutrientreleaseofinvasiveplantlitterregulatedbynutrientenrichmentandwaterlevelchange AT liujian thedecompositionprocessandnutrientreleaseofinvasiveplantlitterregulatedbynutrientenrichmentandwaterlevelchange AT yangruirui decompositionprocessandnutrientreleaseofinvasiveplantlitterregulatedbynutrientenrichmentandwaterlevelchange AT dongjunyu decompositionprocessandnutrientreleaseofinvasiveplantlitterregulatedbynutrientenrichmentandwaterlevelchange AT lichangchao decompositionprocessandnutrientreleaseofinvasiveplantlitterregulatedbynutrientenrichmentandwaterlevelchange AT wanglifei decompositionprocessandnutrientreleaseofinvasiveplantlitterregulatedbynutrientenrichmentandwaterlevelchange AT quanquan decompositionprocessandnutrientreleaseofinvasiveplantlitterregulatedbynutrientenrichmentandwaterlevelchange AT liujian decompositionprocessandnutrientreleaseofinvasiveplantlitterregulatedbynutrientenrichmentandwaterlevelchange |