Cargando…

Genomics of Staphylococcus aureus ocular isolates

Staphylococcus aureus is a major cause of ocular infections, often resulting in devastating vision loss. Despite the significant morbidity associated with these infections, little is yet known regarding the specific strain types that may have a predilection for ocular tissues nor the set of virulenc...

Descripción completa

Detalles Bibliográficos
Autores principales: Johnson, William L., Sohn, Michael B., Taffner, Samantha, Chatterjee, Payel, Dunman, Paul M., Pecora, Nicole, Wozniak, Rachel A. F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8092774/
https://www.ncbi.nlm.nih.gov/pubmed/33939761
http://dx.doi.org/10.1371/journal.pone.0250975
_version_ 1783687692160073728
author Johnson, William L.
Sohn, Michael B.
Taffner, Samantha
Chatterjee, Payel
Dunman, Paul M.
Pecora, Nicole
Wozniak, Rachel A. F.
author_facet Johnson, William L.
Sohn, Michael B.
Taffner, Samantha
Chatterjee, Payel
Dunman, Paul M.
Pecora, Nicole
Wozniak, Rachel A. F.
author_sort Johnson, William L.
collection PubMed
description Staphylococcus aureus is a major cause of ocular infections, often resulting in devastating vision loss. Despite the significant morbidity associated with these infections, little is yet known regarding the specific strain types that may have a predilection for ocular tissues nor the set of virulence factors that drive its pathogenicity in this specific biological niche. Whole genome sequencing (WGS) can provide valuable insight in this regard by providing a prospective, comprehensive assessment of the strain types and virulence factors driving disease among specific subsets of clinical isolates. As such, a set of 163-member S. aureus ocular clinical strains were sequenced and assessed for both common strain types (multilocus sequence type (MLST), spa, agr) associated with ocular infections as well as the presence/absence of 235 known virulence factors in a high throughput manner. This ocular strain set was then directly compared to a fully sequenced 116-member non-ocular S. aureus strain set curated from NCBI in order to identify key differences between ocular and non-ocular S. aureus isolates. The most common sequence types found among ocular S. aureus isolates were ST5, ST8 and ST30, generally reflecting circulating non-ocular pathogenic S. aureus strains. However, importantly, ocular isolates were found to be significantly enriched for a set of enterotoxins, suggesting a potential role for this class of virulence factors in promoting ocular disease. Further genomic analysis revealed that these enterotoxins are located on mobile pathogenicity islands, thus horizontal gene transfer may promote the acquisition of enterotoxins, potentially amplifying S. aureus virulence in ocular tissues.
format Online
Article
Text
id pubmed-8092774
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-80927742021-05-07 Genomics of Staphylococcus aureus ocular isolates Johnson, William L. Sohn, Michael B. Taffner, Samantha Chatterjee, Payel Dunman, Paul M. Pecora, Nicole Wozniak, Rachel A. F. PLoS One Research Article Staphylococcus aureus is a major cause of ocular infections, often resulting in devastating vision loss. Despite the significant morbidity associated with these infections, little is yet known regarding the specific strain types that may have a predilection for ocular tissues nor the set of virulence factors that drive its pathogenicity in this specific biological niche. Whole genome sequencing (WGS) can provide valuable insight in this regard by providing a prospective, comprehensive assessment of the strain types and virulence factors driving disease among specific subsets of clinical isolates. As such, a set of 163-member S. aureus ocular clinical strains were sequenced and assessed for both common strain types (multilocus sequence type (MLST), spa, agr) associated with ocular infections as well as the presence/absence of 235 known virulence factors in a high throughput manner. This ocular strain set was then directly compared to a fully sequenced 116-member non-ocular S. aureus strain set curated from NCBI in order to identify key differences between ocular and non-ocular S. aureus isolates. The most common sequence types found among ocular S. aureus isolates were ST5, ST8 and ST30, generally reflecting circulating non-ocular pathogenic S. aureus strains. However, importantly, ocular isolates were found to be significantly enriched for a set of enterotoxins, suggesting a potential role for this class of virulence factors in promoting ocular disease. Further genomic analysis revealed that these enterotoxins are located on mobile pathogenicity islands, thus horizontal gene transfer may promote the acquisition of enterotoxins, potentially amplifying S. aureus virulence in ocular tissues. Public Library of Science 2021-05-03 /pmc/articles/PMC8092774/ /pubmed/33939761 http://dx.doi.org/10.1371/journal.pone.0250975 Text en © 2021 Johnson et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Johnson, William L.
Sohn, Michael B.
Taffner, Samantha
Chatterjee, Payel
Dunman, Paul M.
Pecora, Nicole
Wozniak, Rachel A. F.
Genomics of Staphylococcus aureus ocular isolates
title Genomics of Staphylococcus aureus ocular isolates
title_full Genomics of Staphylococcus aureus ocular isolates
title_fullStr Genomics of Staphylococcus aureus ocular isolates
title_full_unstemmed Genomics of Staphylococcus aureus ocular isolates
title_short Genomics of Staphylococcus aureus ocular isolates
title_sort genomics of staphylococcus aureus ocular isolates
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8092774/
https://www.ncbi.nlm.nih.gov/pubmed/33939761
http://dx.doi.org/10.1371/journal.pone.0250975
work_keys_str_mv AT johnsonwilliaml genomicsofstaphylococcusaureusocularisolates
AT sohnmichaelb genomicsofstaphylococcusaureusocularisolates
AT taffnersamantha genomicsofstaphylococcusaureusocularisolates
AT chatterjeepayel genomicsofstaphylococcusaureusocularisolates
AT dunmanpaulm genomicsofstaphylococcusaureusocularisolates
AT pecoranicole genomicsofstaphylococcusaureusocularisolates
AT wozniakrachelaf genomicsofstaphylococcusaureusocularisolates