Cargando…

Distinct Poly(A) nucleases have differential impact on sut-2 dependent tauopathy phenotypes.

Aging drives pathological accumulation of proteins such as tau, causing neurodegenerative dementia disorders like Alzheimer’s disease. Previously we showed loss of function mutations in the gene encoding the poly(A) RNA binding protein SUT-2/MSUT2 suppress tau-mediated neurotoxicity in C. elegans ne...

Descripción completa

Detalles Bibliográficos
Autores principales: Kow, Rebecca L., Strovas, Timothy J., McMillan, Pamela J., Jacobi, Ashley M., Behlke, Mark A., Saxton, Aleen D., Latimer, Caitlin S., Keene, C. Dirk, Kraemer, Brian C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8092974/
https://www.ncbi.nlm.nih.gov/pubmed/33184027
http://dx.doi.org/10.1016/j.nbd.2020.105148
_version_ 1783687717537710080
author Kow, Rebecca L.
Strovas, Timothy J.
McMillan, Pamela J.
Jacobi, Ashley M.
Behlke, Mark A.
Saxton, Aleen D.
Latimer, Caitlin S.
Keene, C. Dirk
Kraemer, Brian C.
author_facet Kow, Rebecca L.
Strovas, Timothy J.
McMillan, Pamela J.
Jacobi, Ashley M.
Behlke, Mark A.
Saxton, Aleen D.
Latimer, Caitlin S.
Keene, C. Dirk
Kraemer, Brian C.
author_sort Kow, Rebecca L.
collection PubMed
description Aging drives pathological accumulation of proteins such as tau, causing neurodegenerative dementia disorders like Alzheimer’s disease. Previously we showed loss of function mutations in the gene encoding the poly(A) RNA binding protein SUT-2/MSUT2 suppress tau-mediated neurotoxicity in C. elegans neurons, cultured human cells, and mouse brain, while loss of PABPN1 had the opposite effect (Wheeler et al., 2019). Here we found that blocking poly(A) tail extension with cordycepin exacerbates tauopathy in cultured human cells, which is rescued by MSUT2 knockdown. To further investigate the molecular mechanisms of poly(A) RNA-mediated tauopathy suppression, we examined whether genes encoding poly(A) nucleases also modulated tauopathy in a C. elegans tauopathy model. We found that loss of function mutations in C. elegans ccr-4 and panl-2 genes enhanced tauopathy phenotypes in tau transgenic C. elegans while loss of parn-2 partially suppressed tauopathy. In addition, loss of parn-1 blocked tauopathy suppression by loss of parn-2. Epistasis analysis showed that sut-2 loss of function suppressed the tauopathy enhancement caused by loss of ccr-4 and SUT-2 overexpression exacerbated tauopathy even in the presence of parn-2 loss of function in tau transgenic C. elegans. Thus sut-2 modulation of tauopathy is epistatic to ccr-4 and parn-2. We found that human deadenylases do not colocalize with human MSUT2 in nuclear speckles; however, expression levels of TOE1, the homolog of parn-2, correlated with that of MSUT2 in post-mortem Alzheimer’s disease patient brains. Alzheimer’s disease patients with low TOE1 levels exhibited significantly increased pathological tau deposition and loss of NeuN staining. Taken together, this work suggests suppressing tauopathy cannot be accomplished by simply extending poly(A) tails, but rather a more complex relationship exists between tau, sut-2/MSUT2 function, and control of poly(A) RNA metabolism, and that parn-2/TOE1 may be altered in tauopathy in a similar way.
format Online
Article
Text
id pubmed-8092974
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-80929742022-01-01 Distinct Poly(A) nucleases have differential impact on sut-2 dependent tauopathy phenotypes. Kow, Rebecca L. Strovas, Timothy J. McMillan, Pamela J. Jacobi, Ashley M. Behlke, Mark A. Saxton, Aleen D. Latimer, Caitlin S. Keene, C. Dirk Kraemer, Brian C. Neurobiol Dis Article Aging drives pathological accumulation of proteins such as tau, causing neurodegenerative dementia disorders like Alzheimer’s disease. Previously we showed loss of function mutations in the gene encoding the poly(A) RNA binding protein SUT-2/MSUT2 suppress tau-mediated neurotoxicity in C. elegans neurons, cultured human cells, and mouse brain, while loss of PABPN1 had the opposite effect (Wheeler et al., 2019). Here we found that blocking poly(A) tail extension with cordycepin exacerbates tauopathy in cultured human cells, which is rescued by MSUT2 knockdown. To further investigate the molecular mechanisms of poly(A) RNA-mediated tauopathy suppression, we examined whether genes encoding poly(A) nucleases also modulated tauopathy in a C. elegans tauopathy model. We found that loss of function mutations in C. elegans ccr-4 and panl-2 genes enhanced tauopathy phenotypes in tau transgenic C. elegans while loss of parn-2 partially suppressed tauopathy. In addition, loss of parn-1 blocked tauopathy suppression by loss of parn-2. Epistasis analysis showed that sut-2 loss of function suppressed the tauopathy enhancement caused by loss of ccr-4 and SUT-2 overexpression exacerbated tauopathy even in the presence of parn-2 loss of function in tau transgenic C. elegans. Thus sut-2 modulation of tauopathy is epistatic to ccr-4 and parn-2. We found that human deadenylases do not colocalize with human MSUT2 in nuclear speckles; however, expression levels of TOE1, the homolog of parn-2, correlated with that of MSUT2 in post-mortem Alzheimer’s disease patient brains. Alzheimer’s disease patients with low TOE1 levels exhibited significantly increased pathological tau deposition and loss of NeuN staining. Taken together, this work suggests suppressing tauopathy cannot be accomplished by simply extending poly(A) tails, but rather a more complex relationship exists between tau, sut-2/MSUT2 function, and control of poly(A) RNA metabolism, and that parn-2/TOE1 may be altered in tauopathy in a similar way. 2020-10-25 2021-01 /pmc/articles/PMC8092974/ /pubmed/33184027 http://dx.doi.org/10.1016/j.nbd.2020.105148 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ).
spellingShingle Article
Kow, Rebecca L.
Strovas, Timothy J.
McMillan, Pamela J.
Jacobi, Ashley M.
Behlke, Mark A.
Saxton, Aleen D.
Latimer, Caitlin S.
Keene, C. Dirk
Kraemer, Brian C.
Distinct Poly(A) nucleases have differential impact on sut-2 dependent tauopathy phenotypes.
title Distinct Poly(A) nucleases have differential impact on sut-2 dependent tauopathy phenotypes.
title_full Distinct Poly(A) nucleases have differential impact on sut-2 dependent tauopathy phenotypes.
title_fullStr Distinct Poly(A) nucleases have differential impact on sut-2 dependent tauopathy phenotypes.
title_full_unstemmed Distinct Poly(A) nucleases have differential impact on sut-2 dependent tauopathy phenotypes.
title_short Distinct Poly(A) nucleases have differential impact on sut-2 dependent tauopathy phenotypes.
title_sort distinct poly(a) nucleases have differential impact on sut-2 dependent tauopathy phenotypes.
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8092974/
https://www.ncbi.nlm.nih.gov/pubmed/33184027
http://dx.doi.org/10.1016/j.nbd.2020.105148
work_keys_str_mv AT kowrebeccal distinctpolyanucleaseshavedifferentialimpactonsut2dependenttauopathyphenotypes
AT strovastimothyj distinctpolyanucleaseshavedifferentialimpactonsut2dependenttauopathyphenotypes
AT mcmillanpamelaj distinctpolyanucleaseshavedifferentialimpactonsut2dependenttauopathyphenotypes
AT jacobiashleym distinctpolyanucleaseshavedifferentialimpactonsut2dependenttauopathyphenotypes
AT behlkemarka distinctpolyanucleaseshavedifferentialimpactonsut2dependenttauopathyphenotypes
AT saxtonaleend distinctpolyanucleaseshavedifferentialimpactonsut2dependenttauopathyphenotypes
AT latimercaitlins distinctpolyanucleaseshavedifferentialimpactonsut2dependenttauopathyphenotypes
AT keenecdirk distinctpolyanucleaseshavedifferentialimpactonsut2dependenttauopathyphenotypes
AT kraemerbrianc distinctpolyanucleaseshavedifferentialimpactonsut2dependenttauopathyphenotypes