Cargando…
Projecting COVID-19 disease severity in cancer patients using purposefully-designed machine learning
BACKGROUND: Accurately predicting outcomes for cancer patients with COVID-19 has been clinically challenging. Numerous clinical variables have been retrospectively associated with disease severity, but the predictive value of these variables, and how multiple variables interact to increase risk, rem...
Autores principales: | Navlakha, Saket, Morjaria, Sejal, Perez-Johnston, Rocio, Zhang, Allen, Taur, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8092998/ https://www.ncbi.nlm.nih.gov/pubmed/33941093 http://dx.doi.org/10.1186/s12879-021-06038-2 |
Ejemplares similares
-
Designing a Mission statement Mobile app for palliative care: an innovation project utilizing design-thinking methodology
por: Kamran, Rakhshan, et al.
Publicado: (2020) -
Are we there yet? A machine learning architecture to predict organotropic metastases
por: Skaro, Michael, et al.
Publicado: (2021) -
Characterization of clinical patterns of dengue patients using an unsupervised machine learning approach
por: Macedo Hair, Gleicy, et al.
Publicado: (2019) -
Machine learning based refined differential gene expression analysis of pediatric sepsis
por: Abbas, Mostafa, et al.
Publicado: (2020) -
Computer-aided recording of automatic endoscope washing and disinfection processes as an integral part of medical documentation for quality assurance purposes
por: Krakamp, Bernd, et al.
Publicado: (2010)