Cargando…
Cancer Classification with a Cost-Sensitive Naive Bayes Stacking Ensemble
Ensemble learning combines multiple learners to perform combinatorial learning, which has advantages of good flexibility and higher generalization performance. To achieve higher quality cancer classification, in this study, the fast correlation-based feature selection (FCBF) method was used to prepr...
Autores principales: | Xiong, Yueling, Ye, Mingquan, Wu, Changrong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8093037/ https://www.ncbi.nlm.nih.gov/pubmed/33986823 http://dx.doi.org/10.1155/2021/5556992 |
Ejemplares similares
-
Automated verbal autopsy classification: using one-against-all ensemble method and Naïve Bayes classifier
por: Murtaza, Syed Shariyar, et al.
Publicado: (2019) -
Cancer Classification Based on Support Vector Machine Optimized by Particle Swarm Optimization and Artificial Bee Colony
por: Gao, Lingyun, et al.
Publicado: (2017) -
EEG-Based Emotion Classification Using Stacking Ensemble Approach
por: Chatterjee, Subhajit, et al.
Publicado: (2022) -
NBC: the Naïve Bayes Classification tool webserver for taxonomic classification of metagenomic reads
por: Rosen, Gail L., et al.
Publicado: (2011) -
Comparing Stacking Ensemble Techniques to Improve Musculoskeletal Fracture Image Classification
por: Kandel, Ibrahem, et al.
Publicado: (2021)