Cargando…

Computer extracted gland features from H&E predicts prostate cancer recurrence comparably to a genomic companion diagnostic test: a large multi-site study

Existing tools for post-radical prostatectomy (RP) prostate cancer biochemical recurrence (BCR) prognosis rely on human pathologist-derived parameters such as tumor grade, with the resulting inter-reviewer variability. Genomic companion diagnostic tests such as Decipher tend to be tissue destructive...

Descripción completa

Detalles Bibliográficos
Autores principales: Leo, Patrick, Janowczyk, Andrew, Elliott, Robin, Janaki, Nafiseh, Bera, Kaustav, Shiradkar, Rakesh, Farré, Xavier, Fu, Pingfu, El-Fahmawi, Ayah, Shahait, Mohammed, Kim, Jessica, Lee, David, Yamoah, Kosj, Rebbeck, Timothy R., Khani, Francesca, Robinson, Brian D., Eklund, Lauri, Jambor, Ivan, Merisaari, Harri, Ettala, Otto, Taimen, Pekka, Aronen, Hannu J., Boström, Peter J., Tewari, Ashutosh, Magi-Galluzzi, Cristina, Klein, Eric, Purysko, Andrei, NC Shih, Natalie, Feldman, Michael, Gupta, Sanjay, Lal, Priti, Madabhushi, Anant
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8093226/
https://www.ncbi.nlm.nih.gov/pubmed/33941830
http://dx.doi.org/10.1038/s41698-021-00174-3
_version_ 1783687772051079168
author Leo, Patrick
Janowczyk, Andrew
Elliott, Robin
Janaki, Nafiseh
Bera, Kaustav
Shiradkar, Rakesh
Farré, Xavier
Fu, Pingfu
El-Fahmawi, Ayah
Shahait, Mohammed
Kim, Jessica
Lee, David
Yamoah, Kosj
Rebbeck, Timothy R.
Khani, Francesca
Robinson, Brian D.
Eklund, Lauri
Jambor, Ivan
Merisaari, Harri
Ettala, Otto
Taimen, Pekka
Aronen, Hannu J.
Boström, Peter J.
Tewari, Ashutosh
Magi-Galluzzi, Cristina
Klein, Eric
Purysko, Andrei
NC Shih, Natalie
Feldman, Michael
Gupta, Sanjay
Lal, Priti
Madabhushi, Anant
author_facet Leo, Patrick
Janowczyk, Andrew
Elliott, Robin
Janaki, Nafiseh
Bera, Kaustav
Shiradkar, Rakesh
Farré, Xavier
Fu, Pingfu
El-Fahmawi, Ayah
Shahait, Mohammed
Kim, Jessica
Lee, David
Yamoah, Kosj
Rebbeck, Timothy R.
Khani, Francesca
Robinson, Brian D.
Eklund, Lauri
Jambor, Ivan
Merisaari, Harri
Ettala, Otto
Taimen, Pekka
Aronen, Hannu J.
Boström, Peter J.
Tewari, Ashutosh
Magi-Galluzzi, Cristina
Klein, Eric
Purysko, Andrei
NC Shih, Natalie
Feldman, Michael
Gupta, Sanjay
Lal, Priti
Madabhushi, Anant
author_sort Leo, Patrick
collection PubMed
description Existing tools for post-radical prostatectomy (RP) prostate cancer biochemical recurrence (BCR) prognosis rely on human pathologist-derived parameters such as tumor grade, with the resulting inter-reviewer variability. Genomic companion diagnostic tests such as Decipher tend to be tissue destructive, expensive, and not routinely available in most centers. We present a tissue non-destructive method for automated BCR prognosis, termed "Histotyping", that employs computational image analysis of morphologic patterns of prostate tissue from a single, routinely acquired hematoxylin and eosin slide. Patients from two institutions (n = 214) were used to train Histotyping for identifying high-risk patients based on six features of glandular morphology extracted from RP specimens. Histotyping was validated for post-RP BCR prognosis on a separate set of n = 675 patients from five institutions and compared against Decipher on n = 167 patients. Histotyping was prognostic of BCR in the validation set (p < 0.001, univariable hazard ratio [HR] = 2.83, 95% confidence interval [CI]: 2.03–3.93, concordance index [c-index] = 0.68, median years-to-BCR: 1.7). Histotyping was also prognostic in clinically stratified subsets, such as patients with Gleason grade group 3 (HR = 4.09) and negative surgical margins (HR = 3.26). Histotyping was prognostic independent of grade group, margin status, pathological stage, and preoperative prostate-specific antigen (PSA) (multivariable p < 0.001, HR = 2.09, 95% CI: 1.40–3.10, n = 648). The combination of Histotyping, grade group, and preoperative PSA outperformed Decipher (c-index = 0.75 vs. 0.70, n = 167). These results suggest that a prognostic classifier for prostate cancer based on digital images could serve as an alternative or complement to molecular-based companion diagnostic tests.
format Online
Article
Text
id pubmed-8093226
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-80932262021-05-05 Computer extracted gland features from H&E predicts prostate cancer recurrence comparably to a genomic companion diagnostic test: a large multi-site study Leo, Patrick Janowczyk, Andrew Elliott, Robin Janaki, Nafiseh Bera, Kaustav Shiradkar, Rakesh Farré, Xavier Fu, Pingfu El-Fahmawi, Ayah Shahait, Mohammed Kim, Jessica Lee, David Yamoah, Kosj Rebbeck, Timothy R. Khani, Francesca Robinson, Brian D. Eklund, Lauri Jambor, Ivan Merisaari, Harri Ettala, Otto Taimen, Pekka Aronen, Hannu J. Boström, Peter J. Tewari, Ashutosh Magi-Galluzzi, Cristina Klein, Eric Purysko, Andrei NC Shih, Natalie Feldman, Michael Gupta, Sanjay Lal, Priti Madabhushi, Anant NPJ Precis Oncol Article Existing tools for post-radical prostatectomy (RP) prostate cancer biochemical recurrence (BCR) prognosis rely on human pathologist-derived parameters such as tumor grade, with the resulting inter-reviewer variability. Genomic companion diagnostic tests such as Decipher tend to be tissue destructive, expensive, and not routinely available in most centers. We present a tissue non-destructive method for automated BCR prognosis, termed "Histotyping", that employs computational image analysis of morphologic patterns of prostate tissue from a single, routinely acquired hematoxylin and eosin slide. Patients from two institutions (n = 214) were used to train Histotyping for identifying high-risk patients based on six features of glandular morphology extracted from RP specimens. Histotyping was validated for post-RP BCR prognosis on a separate set of n = 675 patients from five institutions and compared against Decipher on n = 167 patients. Histotyping was prognostic of BCR in the validation set (p < 0.001, univariable hazard ratio [HR] = 2.83, 95% confidence interval [CI]: 2.03–3.93, concordance index [c-index] = 0.68, median years-to-BCR: 1.7). Histotyping was also prognostic in clinically stratified subsets, such as patients with Gleason grade group 3 (HR = 4.09) and negative surgical margins (HR = 3.26). Histotyping was prognostic independent of grade group, margin status, pathological stage, and preoperative prostate-specific antigen (PSA) (multivariable p < 0.001, HR = 2.09, 95% CI: 1.40–3.10, n = 648). The combination of Histotyping, grade group, and preoperative PSA outperformed Decipher (c-index = 0.75 vs. 0.70, n = 167). These results suggest that a prognostic classifier for prostate cancer based on digital images could serve as an alternative or complement to molecular-based companion diagnostic tests. Nature Publishing Group UK 2021-05-03 /pmc/articles/PMC8093226/ /pubmed/33941830 http://dx.doi.org/10.1038/s41698-021-00174-3 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Leo, Patrick
Janowczyk, Andrew
Elliott, Robin
Janaki, Nafiseh
Bera, Kaustav
Shiradkar, Rakesh
Farré, Xavier
Fu, Pingfu
El-Fahmawi, Ayah
Shahait, Mohammed
Kim, Jessica
Lee, David
Yamoah, Kosj
Rebbeck, Timothy R.
Khani, Francesca
Robinson, Brian D.
Eklund, Lauri
Jambor, Ivan
Merisaari, Harri
Ettala, Otto
Taimen, Pekka
Aronen, Hannu J.
Boström, Peter J.
Tewari, Ashutosh
Magi-Galluzzi, Cristina
Klein, Eric
Purysko, Andrei
NC Shih, Natalie
Feldman, Michael
Gupta, Sanjay
Lal, Priti
Madabhushi, Anant
Computer extracted gland features from H&E predicts prostate cancer recurrence comparably to a genomic companion diagnostic test: a large multi-site study
title Computer extracted gland features from H&E predicts prostate cancer recurrence comparably to a genomic companion diagnostic test: a large multi-site study
title_full Computer extracted gland features from H&E predicts prostate cancer recurrence comparably to a genomic companion diagnostic test: a large multi-site study
title_fullStr Computer extracted gland features from H&E predicts prostate cancer recurrence comparably to a genomic companion diagnostic test: a large multi-site study
title_full_unstemmed Computer extracted gland features from H&E predicts prostate cancer recurrence comparably to a genomic companion diagnostic test: a large multi-site study
title_short Computer extracted gland features from H&E predicts prostate cancer recurrence comparably to a genomic companion diagnostic test: a large multi-site study
title_sort computer extracted gland features from h&e predicts prostate cancer recurrence comparably to a genomic companion diagnostic test: a large multi-site study
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8093226/
https://www.ncbi.nlm.nih.gov/pubmed/33941830
http://dx.doi.org/10.1038/s41698-021-00174-3
work_keys_str_mv AT leopatrick computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT janowczykandrew computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT elliottrobin computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT janakinafiseh computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT berakaustav computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT shiradkarrakesh computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT farrexavier computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT fupingfu computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT elfahmawiayah computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT shahaitmohammed computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT kimjessica computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT leedavid computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT yamoahkosj computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT rebbecktimothyr computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT khanifrancesca computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT robinsonbriand computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT eklundlauri computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT jamborivan computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT merisaariharri computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT ettalaotto computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT taimenpekka computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT aronenhannuj computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT bostrompeterj computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT tewariashutosh computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT magigalluzzicristina computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT kleineric computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT puryskoandrei computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT ncshihnatalie computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT feldmanmichael computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT guptasanjay computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT lalpriti computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy
AT madabhushianant computerextractedglandfeaturesfromhepredictsprostatecancerrecurrencecomparablytoagenomiccompaniondiagnostictestalargemultisitestudy