Cargando…

Auditory streaming emerges from fast excitation and slow delayed inhibition

In the auditory streaming paradigm, alternating sequences of pure tones can be perceived as a single galloping rhythm (integration) or as two sequences with separated low and high tones (segregation). Although studied for decades, the neural mechanisms underlining this perceptual grouping of sound r...

Descripción completa

Detalles Bibliográficos
Autores principales: Ferrario, Andrea, Rankin, James
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8093365/
https://www.ncbi.nlm.nih.gov/pubmed/33939042
http://dx.doi.org/10.1186/s13408-021-00106-2
Descripción
Sumario:In the auditory streaming paradigm, alternating sequences of pure tones can be perceived as a single galloping rhythm (integration) or as two sequences with separated low and high tones (segregation). Although studied for decades, the neural mechanisms underlining this perceptual grouping of sound remains a mystery. With the aim of identifying a plausible minimal neural circuit that captures this phenomenon, we propose a firing rate model with two periodically forced neural populations coupled by fast direct excitation and slow delayed inhibition. By analyzing the model in a non-smooth, slow-fast regime we analytically prove the existence of a rich repertoire of dynamical states and of their parameter dependent transitions. We impose plausible parameter restrictions and link all states with perceptual interpretations. Regions of stimulus parameters occupied by states linked with each percept match those found in behavioural experiments. Our model suggests that slow inhibition masks the perception of subsequent tones during segregation (forward masking), whereas fast excitation enables integration for large pitch differences between the two tones. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13408-021-00106-2.