Cargando…
Supervised Learning Computer Vision Benchmark for Snake Species Identification From Photographs: Implications for Herpetology and Global Health
We trained a computer vision algorithm to identify 45 species of snakes from photos and compared its performance to that of humans. Both human and algorithm performance is substantially better than randomly guessing (null probability of guessing correctly given 45 classes = 2.2%). Some species (e.g....
Autores principales: | Durso, Andrew M., Moorthy, Gokula Krishnan, Mohanty, Sharada P., Bolon, Isabelle, Salathé, Marcel, Ruiz de Castañeda, Rafael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8093445/ https://www.ncbi.nlm.nih.gov/pubmed/33959704 http://dx.doi.org/10.3389/frai.2021.582110 |
Ejemplares similares
-
An artificial intelligence model to identify snakes from across the world: Opportunities and challenges for global health and herpetology
por: Bolon, Isabelle, et al.
Publicado: (2022) -
Deep Learning for Understanding Satellite Imagery: An Experimental Survey
por: Mohanty, Sharada Prasanna, et al.
Publicado: (2020) -
COVID-Twitter-BERT: A natural language processing model to analyse COVID-19 content on Twitter
por: Müller, Martin, et al.
Publicado: (2023) -
Building One-Shot Semi-Supervised (BOSS) Learning Up to Fully Supervised Performance
por: Smith, Leslie N., et al.
Publicado: (2022) -
Lexical simplification benchmarks for English, Portuguese, and Spanish
por: Štajner, Sanja, et al.
Publicado: (2022)