Cargando…
Metagenomic Geolocation Prediction Using an Adaptive Ensemble Classifier
Microbiome samples harvested from urban environments can be informative in predicting the geographic location of unknown samples. The idea that different cities may have geographically disparate microbial signatures can be utilized to predict the geographical location based on city-specific microbio...
Autores principales: | Anyaso-Samuel, Samuel, Sachdeva, Archie, Guha, Subharup, Datta, Somnath |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8093763/ https://www.ncbi.nlm.nih.gov/pubmed/33959149 http://dx.doi.org/10.3389/fgene.2021.642282 |
Ejemplares similares
-
Metagenomic Geolocation Using Read Signatures
por: Chappell , Timothy, et al.
Publicado: (2022) -
Unraveling City-Specific Microbial Signatures and Identifying Sample Origins for the Data From CAMDA 2020 Metagenomic Geolocation Challenge
por: Zhang, Runzhi, et al.
Publicado: (2021) -
An adaptive optimal ensemble classifier via bagging and rank aggregation with applications to high dimensional data
por: Datta, Susmita, et al.
Publicado: (2010) -
Comprehensive benchmarking and ensemble approaches for metagenomic classifiers
por: McIntyre, Alexa B. R., et al.
Publicado: (2017) -
Correction to: Comprehensive benchmarking and ensemble approaches for metagenomic classifiers
por: McIntyre, Alexa B. R., et al.
Publicado: (2019)