Cargando…
Identifying the minimum amplicon sequence depth to adequately predict classes in eDNA-based marine biomonitoring using supervised machine learning
Environmental DNA metabarcoding is a powerful approach for use in biomonitoring and impact assessments. Amplicon-based eDNA sequence data are characteristically highly divergent in sequencing depth (total reads per sample) as influenced inter alia by the number of samples simultaneously analyzed per...
Autores principales: | Dully, Verena, Wilding, Thomas A., Mühlhaus, Timo, Stoeck, Thorsten |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8093828/ https://www.ncbi.nlm.nih.gov/pubmed/33995917 http://dx.doi.org/10.1016/j.csbj.2021.04.005 |
Ejemplares similares
-
Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding
por: Andruszkiewicz, Elizabeth A., et al.
Publicado: (2017) -
eDNA metabarcoding as a biomonitoring tool for marine protected areas
por: Gold, Zachary, et al.
Publicado: (2021) -
Ecosystem biomonitoring with eDNA: metabarcoding across the tree of life in a tropical marine environment
por: Stat, Michael, et al.
Publicado: (2017) -
Why eDNA fractions need consideration in biomonitoring
por: Nagler, Magdalena, et al.
Publicado: (2022) -
Comparing quantile regression spline analyses and supervised machine learning for environmental quality assessment at coastal marine aquaculture installations
por: Leontidou, Kleopatra, et al.
Publicado: (2023)