Cargando…
Structural studies of the shortest extended synaptotagmin with only two C2 domains from Trypanosoma brucei
Extended synaptotagmins (E-Syts) localize at membrane contact sites between the endoplasmic reticulum (ER) and the plasma membrane to mediate inter-membrane lipid transfer and control plasma membrane lipid homeostasis. All known E-Syts contain an N-terminal transmembrane (TM) hairpin, a central syna...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8093936/ https://www.ncbi.nlm.nih.gov/pubmed/33997700 http://dx.doi.org/10.1016/j.isci.2021.102422 |
Sumario: | Extended synaptotagmins (E-Syts) localize at membrane contact sites between the endoplasmic reticulum (ER) and the plasma membrane to mediate inter-membrane lipid transfer and control plasma membrane lipid homeostasis. All known E-Syts contain an N-terminal transmembrane (TM) hairpin, a central synaptotagmin-like mitochondrial lipid-binding protein (SMP) domain, and three or five C2 domains at their C termini. Here we report an uncharacterized E-Syt from the protist parasite Trypanosoma brucei, namely, TbE-Syt. TbE-Syt contains only two C2 domains (C2A and C2B), making it the shortest E-Syt known by now. We determined a 1.5-Å-resolution crystal structure of TbE-Syt-C2B and revealed that it binds lipids via both Ca(2+)- and PI(4,5)P(2)-dependent means. In contrast, TbE-Syt-C2A lacks the Ca(2+)-binding site but may still interact with lipids via a basic surface patch. Our studies suggest a mechanism for how TbE-Syt tethers the ER membrane tightly to the plasma membrane to transfer lipids between the two organelles. |
---|