Cargando…

Caffeic acid protects mice pancreatic islets from oxidative stress induced by multi-walled carbon nanotubes (MWCNTs)

Increasing applications of carbon nanotubes (CNTs) indicate the necessity to examine their toxicity. According to previous studies, CNTs caused oxidative stress that impaired β-cell functions and reduced insulin secretion. Our previous study indicated that single-walled carbon nanotubes (SWCNTs) cou...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahangarpour, Akram, Alboghobeish, Soheila, Oroojan, Ali Akbar, Dehghani, Mohammad Amin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Urmia University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8094137/
https://www.ncbi.nlm.nih.gov/pubmed/33953877
http://dx.doi.org/10.30466/vrf.2019.94666.2279
Descripción
Sumario:Increasing applications of carbon nanotubes (CNTs) indicate the necessity to examine their toxicity. According to previous studies, CNTs caused oxidative stress that impaired β-cell functions and reduced insulin secretion. Our previous study indicated that single-walled carbon nanotubes (SWCNTs) could induce oxidative stress in pancreatic islets. However, there is no study on the effects of multi-walled carbon nanotubes (MWCNTs) on islets and β-cells. Therefore, the present study aims to evaluate effects of MWCNTs on the oxidative stress of islets and the protective effects of caffeic acid (CA) as an antioxidant. The effects of MWCNTs and CA on islets were investigated using MTT assay, reactive oxygen species (ROS), malondialdehyde (MDA), activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), the content of glutathione (GSH) and mitochondrial membrane potential (MMP) and insulin secretion measurements. The lower viability of islet cells was dose-dependent due to the exposure to MWCNTs according to the MTT assay. Further studies revealed that MWCNTs decreased insulin secretion and MMP, induced ROS creation, increased the MDA level, and decreased activities of SOD, GSH-Px, CAT, and content of GSH. Furthermore, the pretreatment of islets with CA returned the changes. These findings indicated that MWCNTs might induce the oxidative stress of pancreatic islets occurring diabetes and protective CA effects that were mediated by the augmentation of the antioxidant defense system of islets. Our research suggested the necessity of conducting further studies on effects of MWCNTs and CA on the diabetes.