Cargando…
A filter approach for feature selection in classification: application to automatic atrial fibrillation detection in electrocardiogram recordings
BACKGROUND: In high-dimensional data analysis, the complexity of predictive models can be reduced by selecting the most relevant features, which is crucial to reduce data noise and increase model accuracy and interpretability. Thus, in the field of clinical decision making, only the most relevant fe...
Autores principales: | Michel, Pierre, Ngo, Nicolas, Pons, Jean-François, Delliaux, Stéphane, Giorgi, Roch |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8094578/ https://www.ncbi.nlm.nih.gov/pubmed/33947379 http://dx.doi.org/10.1186/s12911-021-01427-8 |
Ejemplares similares
-
Automatic Multichannel Electrocardiogram Record Classification Using XGBoost Fusion Model
por: Ye, Xiaohong, et al.
Publicado: (2022) -
Improving Automatic Smartwatch Electrocardiogram Diagnosis of Atrial Fibrillation by Identifying Regularity within Irregularity
por: Velraeds, Anouk, et al.
Publicado: (2023) -
Prediction model for the new onset of atrial fibrillation combining features of 24-hour Holter electrocardiogram with 12-lead electrocardiogram
por: Nishimura, Tetsuro, et al.
Publicado: (2023) -
Screening for atrial fibrillation: predicted sensitivity of short, intermittent electrocardiogram recordings in an asymptomatic at-risk population
por: Quer, Giorgio, et al.
Publicado: (2020) -
Frequency Analysis of Atrial Fibrillation From the Surface Electrocardiogram
por: Husser, Daniela, et al.
Publicado: (2004)