Cargando…
MRI-based radiomics for prognosis of pediatric diffuse intrinsic pontine glioma: an international study
BACKGROUND: Diffuse intrinsic pontine gliomas (DIPGs) are lethal pediatric brain tumors. Presently, MRI is the mainstay of disease diagnosis and surveillance. We identify clinically significant computational features from MRI and create a prognostic machine learning model. METHODS: We isolated tumor...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8095337/ https://www.ncbi.nlm.nih.gov/pubmed/33977272 http://dx.doi.org/10.1093/noajnl/vdab042 |
_version_ | 1783688059445837824 |
---|---|
author | Tam, Lydia T Yeom, Kristen W Wright, Jason N Jaju, Alok Radmanesh, Alireza Han, Michelle Toescu, Sebastian Maleki, Maryam Chen, Eric Campion, Andrew Lai, Hollie A Eghbal, Azam A Oztekin, Ozgur Mankad, Kshitij Hargrave, Darren Jacques, Thomas S Goetti, Robert Lober, Robert M Cheshier, Samuel H Napel, Sandy Said, Mourad Aquilina, Kristian Ho, Chang Y Monje, Michelle Vitanza, Nicholas A Mattonen, Sarah A |
author_facet | Tam, Lydia T Yeom, Kristen W Wright, Jason N Jaju, Alok Radmanesh, Alireza Han, Michelle Toescu, Sebastian Maleki, Maryam Chen, Eric Campion, Andrew Lai, Hollie A Eghbal, Azam A Oztekin, Ozgur Mankad, Kshitij Hargrave, Darren Jacques, Thomas S Goetti, Robert Lober, Robert M Cheshier, Samuel H Napel, Sandy Said, Mourad Aquilina, Kristian Ho, Chang Y Monje, Michelle Vitanza, Nicholas A Mattonen, Sarah A |
author_sort | Tam, Lydia T |
collection | PubMed |
description | BACKGROUND: Diffuse intrinsic pontine gliomas (DIPGs) are lethal pediatric brain tumors. Presently, MRI is the mainstay of disease diagnosis and surveillance. We identify clinically significant computational features from MRI and create a prognostic machine learning model. METHODS: We isolated tumor volumes of T1-post-contrast (T1) and T2-weighted (T2) MRIs from 177 treatment-naïve DIPG patients from an international cohort for model training and testing. The Quantitative Image Feature Pipeline and PyRadiomics was used for feature extraction. Ten-fold cross-validation of least absolute shrinkage and selection operator Cox regression selected optimal features to predict overall survival in the training dataset and tested in the independent testing dataset. We analyzed model performance using clinical variables (age at diagnosis and sex) only, radiomics only, and radiomics plus clinical variables. RESULTS: All selected features were intensity and texture-based on the wavelet-filtered images (3 T1 gray-level co-occurrence matrix (GLCM) texture features, T2 GLCM texture feature, and T2 first-order mean). This multivariable Cox model demonstrated a concordance of 0.68 (95% CI: 0.61–0.74) in the training dataset, significantly outperforming the clinical-only model (C = 0.57 [95% CI: 0.49–0.64]). Adding clinical features to radiomics slightly improved performance (C = 0.70 [95% CI: 0.64–0.77]). The combined radiomics and clinical model was validated in the independent testing dataset (C = 0.59 [95% CI: 0.51–0.67], Noether’s test P = .02). CONCLUSIONS: In this international study, we demonstrate the use of radiomic signatures to create a machine learning model for DIPG prognostication. Standardized, quantitative approaches that objectively measure DIPG changes, including computational MRI evaluation, could offer new approaches to assessing tumor phenotype and serve a future role for optimizing clinical trial eligibility and tumor surveillance. |
format | Online Article Text |
id | pubmed-8095337 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-80953372021-05-10 MRI-based radiomics for prognosis of pediatric diffuse intrinsic pontine glioma: an international study Tam, Lydia T Yeom, Kristen W Wright, Jason N Jaju, Alok Radmanesh, Alireza Han, Michelle Toescu, Sebastian Maleki, Maryam Chen, Eric Campion, Andrew Lai, Hollie A Eghbal, Azam A Oztekin, Ozgur Mankad, Kshitij Hargrave, Darren Jacques, Thomas S Goetti, Robert Lober, Robert M Cheshier, Samuel H Napel, Sandy Said, Mourad Aquilina, Kristian Ho, Chang Y Monje, Michelle Vitanza, Nicholas A Mattonen, Sarah A Neurooncol Adv Clinical Investigations BACKGROUND: Diffuse intrinsic pontine gliomas (DIPGs) are lethal pediatric brain tumors. Presently, MRI is the mainstay of disease diagnosis and surveillance. We identify clinically significant computational features from MRI and create a prognostic machine learning model. METHODS: We isolated tumor volumes of T1-post-contrast (T1) and T2-weighted (T2) MRIs from 177 treatment-naïve DIPG patients from an international cohort for model training and testing. The Quantitative Image Feature Pipeline and PyRadiomics was used for feature extraction. Ten-fold cross-validation of least absolute shrinkage and selection operator Cox regression selected optimal features to predict overall survival in the training dataset and tested in the independent testing dataset. We analyzed model performance using clinical variables (age at diagnosis and sex) only, radiomics only, and radiomics plus clinical variables. RESULTS: All selected features were intensity and texture-based on the wavelet-filtered images (3 T1 gray-level co-occurrence matrix (GLCM) texture features, T2 GLCM texture feature, and T2 first-order mean). This multivariable Cox model demonstrated a concordance of 0.68 (95% CI: 0.61–0.74) in the training dataset, significantly outperforming the clinical-only model (C = 0.57 [95% CI: 0.49–0.64]). Adding clinical features to radiomics slightly improved performance (C = 0.70 [95% CI: 0.64–0.77]). The combined radiomics and clinical model was validated in the independent testing dataset (C = 0.59 [95% CI: 0.51–0.67], Noether’s test P = .02). CONCLUSIONS: In this international study, we demonstrate the use of radiomic signatures to create a machine learning model for DIPG prognostication. Standardized, quantitative approaches that objectively measure DIPG changes, including computational MRI evaluation, could offer new approaches to assessing tumor phenotype and serve a future role for optimizing clinical trial eligibility and tumor surveillance. Oxford University Press 2021-03-05 /pmc/articles/PMC8095337/ /pubmed/33977272 http://dx.doi.org/10.1093/noajnl/vdab042 Text en © The Author(s) 2021. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Clinical Investigations Tam, Lydia T Yeom, Kristen W Wright, Jason N Jaju, Alok Radmanesh, Alireza Han, Michelle Toescu, Sebastian Maleki, Maryam Chen, Eric Campion, Andrew Lai, Hollie A Eghbal, Azam A Oztekin, Ozgur Mankad, Kshitij Hargrave, Darren Jacques, Thomas S Goetti, Robert Lober, Robert M Cheshier, Samuel H Napel, Sandy Said, Mourad Aquilina, Kristian Ho, Chang Y Monje, Michelle Vitanza, Nicholas A Mattonen, Sarah A MRI-based radiomics for prognosis of pediatric diffuse intrinsic pontine glioma: an international study |
title | MRI-based radiomics for prognosis of pediatric diffuse intrinsic pontine glioma: an international study |
title_full | MRI-based radiomics for prognosis of pediatric diffuse intrinsic pontine glioma: an international study |
title_fullStr | MRI-based radiomics for prognosis of pediatric diffuse intrinsic pontine glioma: an international study |
title_full_unstemmed | MRI-based radiomics for prognosis of pediatric diffuse intrinsic pontine glioma: an international study |
title_short | MRI-based radiomics for prognosis of pediatric diffuse intrinsic pontine glioma: an international study |
title_sort | mri-based radiomics for prognosis of pediatric diffuse intrinsic pontine glioma: an international study |
topic | Clinical Investigations |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8095337/ https://www.ncbi.nlm.nih.gov/pubmed/33977272 http://dx.doi.org/10.1093/noajnl/vdab042 |
work_keys_str_mv | AT tamlydiat mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy AT yeomkristenw mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy AT wrightjasonn mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy AT jajualok mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy AT radmaneshalireza mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy AT hanmichelle mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy AT toescusebastian mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy AT malekimaryam mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy AT cheneric mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy AT campionandrew mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy AT laiholliea mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy AT eghbalazama mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy AT oztekinozgur mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy AT mankadkshitij mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy AT hargravedarren mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy AT jacquesthomass mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy AT goettirobert mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy AT loberrobertm mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy AT cheshiersamuelh mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy AT napelsandy mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy AT saidmourad mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy AT aquilinakristian mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy AT hochangy mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy AT monjemichelle mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy AT vitanzanicholasa mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy AT mattonensaraha mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy |