Cargando…

MRI-based radiomics for prognosis of pediatric diffuse intrinsic pontine glioma: an international study

BACKGROUND: Diffuse intrinsic pontine gliomas (DIPGs) are lethal pediatric brain tumors. Presently, MRI is the mainstay of disease diagnosis and surveillance. We identify clinically significant computational features from MRI and create a prognostic machine learning model. METHODS: We isolated tumor...

Descripción completa

Detalles Bibliográficos
Autores principales: Tam, Lydia T, Yeom, Kristen W, Wright, Jason N, Jaju, Alok, Radmanesh, Alireza, Han, Michelle, Toescu, Sebastian, Maleki, Maryam, Chen, Eric, Campion, Andrew, Lai, Hollie A, Eghbal, Azam A, Oztekin, Ozgur, Mankad, Kshitij, Hargrave, Darren, Jacques, Thomas S, Goetti, Robert, Lober, Robert M, Cheshier, Samuel H, Napel, Sandy, Said, Mourad, Aquilina, Kristian, Ho, Chang Y, Monje, Michelle, Vitanza, Nicholas A, Mattonen, Sarah A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8095337/
https://www.ncbi.nlm.nih.gov/pubmed/33977272
http://dx.doi.org/10.1093/noajnl/vdab042
_version_ 1783688059445837824
author Tam, Lydia T
Yeom, Kristen W
Wright, Jason N
Jaju, Alok
Radmanesh, Alireza
Han, Michelle
Toescu, Sebastian
Maleki, Maryam
Chen, Eric
Campion, Andrew
Lai, Hollie A
Eghbal, Azam A
Oztekin, Ozgur
Mankad, Kshitij
Hargrave, Darren
Jacques, Thomas S
Goetti, Robert
Lober, Robert M
Cheshier, Samuel H
Napel, Sandy
Said, Mourad
Aquilina, Kristian
Ho, Chang Y
Monje, Michelle
Vitanza, Nicholas A
Mattonen, Sarah A
author_facet Tam, Lydia T
Yeom, Kristen W
Wright, Jason N
Jaju, Alok
Radmanesh, Alireza
Han, Michelle
Toescu, Sebastian
Maleki, Maryam
Chen, Eric
Campion, Andrew
Lai, Hollie A
Eghbal, Azam A
Oztekin, Ozgur
Mankad, Kshitij
Hargrave, Darren
Jacques, Thomas S
Goetti, Robert
Lober, Robert M
Cheshier, Samuel H
Napel, Sandy
Said, Mourad
Aquilina, Kristian
Ho, Chang Y
Monje, Michelle
Vitanza, Nicholas A
Mattonen, Sarah A
author_sort Tam, Lydia T
collection PubMed
description BACKGROUND: Diffuse intrinsic pontine gliomas (DIPGs) are lethal pediatric brain tumors. Presently, MRI is the mainstay of disease diagnosis and surveillance. We identify clinically significant computational features from MRI and create a prognostic machine learning model. METHODS: We isolated tumor volumes of T1-post-contrast (T1) and T2-weighted (T2) MRIs from 177 treatment-naïve DIPG patients from an international cohort for model training and testing. The Quantitative Image Feature Pipeline and PyRadiomics was used for feature extraction. Ten-fold cross-validation of least absolute shrinkage and selection operator Cox regression selected optimal features to predict overall survival in the training dataset and tested in the independent testing dataset. We analyzed model performance using clinical variables (age at diagnosis and sex) only, radiomics only, and radiomics plus clinical variables. RESULTS: All selected features were intensity and texture-based on the wavelet-filtered images (3 T1 gray-level co-occurrence matrix (GLCM) texture features, T2 GLCM texture feature, and T2 first-order mean). This multivariable Cox model demonstrated a concordance of 0.68 (95% CI: 0.61–0.74) in the training dataset, significantly outperforming the clinical-only model (C = 0.57 [95% CI: 0.49–0.64]). Adding clinical features to radiomics slightly improved performance (C = 0.70 [95% CI: 0.64–0.77]). The combined radiomics and clinical model was validated in the independent testing dataset (C = 0.59 [95% CI: 0.51–0.67], Noether’s test P = .02). CONCLUSIONS: In this international study, we demonstrate the use of radiomic signatures to create a machine learning model for DIPG prognostication. Standardized, quantitative approaches that objectively measure DIPG changes, including computational MRI evaluation, could offer new approaches to assessing tumor phenotype and serve a future role for optimizing clinical trial eligibility and tumor surveillance.
format Online
Article
Text
id pubmed-8095337
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-80953372021-05-10 MRI-based radiomics for prognosis of pediatric diffuse intrinsic pontine glioma: an international study Tam, Lydia T Yeom, Kristen W Wright, Jason N Jaju, Alok Radmanesh, Alireza Han, Michelle Toescu, Sebastian Maleki, Maryam Chen, Eric Campion, Andrew Lai, Hollie A Eghbal, Azam A Oztekin, Ozgur Mankad, Kshitij Hargrave, Darren Jacques, Thomas S Goetti, Robert Lober, Robert M Cheshier, Samuel H Napel, Sandy Said, Mourad Aquilina, Kristian Ho, Chang Y Monje, Michelle Vitanza, Nicholas A Mattonen, Sarah A Neurooncol Adv Clinical Investigations BACKGROUND: Diffuse intrinsic pontine gliomas (DIPGs) are lethal pediatric brain tumors. Presently, MRI is the mainstay of disease diagnosis and surveillance. We identify clinically significant computational features from MRI and create a prognostic machine learning model. METHODS: We isolated tumor volumes of T1-post-contrast (T1) and T2-weighted (T2) MRIs from 177 treatment-naïve DIPG patients from an international cohort for model training and testing. The Quantitative Image Feature Pipeline and PyRadiomics was used for feature extraction. Ten-fold cross-validation of least absolute shrinkage and selection operator Cox regression selected optimal features to predict overall survival in the training dataset and tested in the independent testing dataset. We analyzed model performance using clinical variables (age at diagnosis and sex) only, radiomics only, and radiomics plus clinical variables. RESULTS: All selected features were intensity and texture-based on the wavelet-filtered images (3 T1 gray-level co-occurrence matrix (GLCM) texture features, T2 GLCM texture feature, and T2 first-order mean). This multivariable Cox model demonstrated a concordance of 0.68 (95% CI: 0.61–0.74) in the training dataset, significantly outperforming the clinical-only model (C = 0.57 [95% CI: 0.49–0.64]). Adding clinical features to radiomics slightly improved performance (C = 0.70 [95% CI: 0.64–0.77]). The combined radiomics and clinical model was validated in the independent testing dataset (C = 0.59 [95% CI: 0.51–0.67], Noether’s test P = .02). CONCLUSIONS: In this international study, we demonstrate the use of radiomic signatures to create a machine learning model for DIPG prognostication. Standardized, quantitative approaches that objectively measure DIPG changes, including computational MRI evaluation, could offer new approaches to assessing tumor phenotype and serve a future role for optimizing clinical trial eligibility and tumor surveillance. Oxford University Press 2021-03-05 /pmc/articles/PMC8095337/ /pubmed/33977272 http://dx.doi.org/10.1093/noajnl/vdab042 Text en © The Author(s) 2021. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Clinical Investigations
Tam, Lydia T
Yeom, Kristen W
Wright, Jason N
Jaju, Alok
Radmanesh, Alireza
Han, Michelle
Toescu, Sebastian
Maleki, Maryam
Chen, Eric
Campion, Andrew
Lai, Hollie A
Eghbal, Azam A
Oztekin, Ozgur
Mankad, Kshitij
Hargrave, Darren
Jacques, Thomas S
Goetti, Robert
Lober, Robert M
Cheshier, Samuel H
Napel, Sandy
Said, Mourad
Aquilina, Kristian
Ho, Chang Y
Monje, Michelle
Vitanza, Nicholas A
Mattonen, Sarah A
MRI-based radiomics for prognosis of pediatric diffuse intrinsic pontine glioma: an international study
title MRI-based radiomics for prognosis of pediatric diffuse intrinsic pontine glioma: an international study
title_full MRI-based radiomics for prognosis of pediatric diffuse intrinsic pontine glioma: an international study
title_fullStr MRI-based radiomics for prognosis of pediatric diffuse intrinsic pontine glioma: an international study
title_full_unstemmed MRI-based radiomics for prognosis of pediatric diffuse intrinsic pontine glioma: an international study
title_short MRI-based radiomics for prognosis of pediatric diffuse intrinsic pontine glioma: an international study
title_sort mri-based radiomics for prognosis of pediatric diffuse intrinsic pontine glioma: an international study
topic Clinical Investigations
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8095337/
https://www.ncbi.nlm.nih.gov/pubmed/33977272
http://dx.doi.org/10.1093/noajnl/vdab042
work_keys_str_mv AT tamlydiat mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy
AT yeomkristenw mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy
AT wrightjasonn mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy
AT jajualok mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy
AT radmaneshalireza mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy
AT hanmichelle mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy
AT toescusebastian mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy
AT malekimaryam mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy
AT cheneric mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy
AT campionandrew mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy
AT laiholliea mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy
AT eghbalazama mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy
AT oztekinozgur mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy
AT mankadkshitij mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy
AT hargravedarren mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy
AT jacquesthomass mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy
AT goettirobert mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy
AT loberrobertm mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy
AT cheshiersamuelh mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy
AT napelsandy mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy
AT saidmourad mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy
AT aquilinakristian mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy
AT hochangy mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy
AT monjemichelle mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy
AT vitanzanicholasa mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy
AT mattonensaraha mribasedradiomicsforprognosisofpediatricdiffuseintrinsicpontinegliomaaninternationalstudy