Cargando…

Ileal Transcriptomic Analysis in Paediatric Crohn’s Disease Reveals IL17- and NOD-signalling Expression Signatures in Treatment-naïve Patients and Identifies Epithelial Cells Driving Differentially Expressed Genes

BACKGROUND AND AIMS: Crohn’s disease [CD] arises through host-environment interaction. Abnormal gene expression results from disturbed pathway activation or response to bacteria. We aimed to determine activated pathways and driving cell types in paediatric CD. METHODS: We employed contemporary targe...

Descripción completa

Detalles Bibliográficos
Autores principales: Ashton, James J, Boukas, Konstantinos, Davies, James, Stafford, Imogen S, Vallejo, Andres F, Haggarty, Rachel, Coelho, Tracy A F, Batra, Akshay, Afzal, Nadeem A, Vadgama, Bhumita, Williams, Anthony P, Beattie, R Mark, Polak, Marta E, Ennis, Sarah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8095388/
https://www.ncbi.nlm.nih.gov/pubmed/33232439
http://dx.doi.org/10.1093/ecco-jcc/jjaa236
Descripción
Sumario:BACKGROUND AND AIMS: Crohn’s disease [CD] arises through host-environment interaction. Abnormal gene expression results from disturbed pathway activation or response to bacteria. We aimed to determine activated pathways and driving cell types in paediatric CD. METHODS: We employed contemporary targeted autoimmune RNA sequencing, in parallel to single-cell sequencing, to ileal tissue derived from paediatric CD and controls. Weighted gene co-expression network analysis [WGCNA] was performed and differentially expressed genes [DEGs] were determined. We integrated clinical data to determine co-expression modules associated with outcomes. RESULTS: In all, 27 treatment-naive CD [TN-CD], 26 established CD patients and 17 controls were included. WGCNA revealed a 31-gene signature characterising TN-CD patients, but not established CD, nor controls. The CSF3R gene is a hub within this module and is key in neutrophil expansion and differentiation. Antimicrobial genes, including S100A12 and the calprotectin subunit S100A9, were significantly upregulated in TN CD compared with controls [p = 2.61 x 10(-15) and p = 9.13 x 10(-14), respectively] and established CD [both p = 0.0055]. Gene-enrichment analysis confirmed upregulation of the IL17-, NOD- and Oncostatin-M-signalling pathways in TN-CD patients, identified in both WGCNA and DEG analyses. An upregulated gene signature was enriched for transcripts promoting Th17-cell differentiation and correlated with prolonged time to relapse [correlation-coefficient-0.36, p = 0.07]. Single-cell sequencing of TN-CD patients identified specialised epithelial cells driving differential expression of S100A9. Cell groups, determined by single-cell gene expression, demonstrated enrichment of IL17-signalling in monocytes and epithelial cells. CONCLUSIONS: Ileal tissue from treatment-naïve paediatric patients is significantly upregulated for genes driving IL17-, NOD- and Oncostatin-M-signalling. This signal is driven by a distinct subset of epithelial cells expressing antimicrobial gene transcripts.