Cargando…
Caputo fractional-order SEIRP model for COVID-19 Pandemic
We propose a Caputo-based fractional compartmental model for the dynamics of the novel COVID-19 pandemic. The newly proposed nonlinear fractional order model is an extension of a recently formulated integer-order COVID-19 mathematical model. Using basic concepts such as continuity and Banach fixed-p...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8096164/ http://dx.doi.org/10.1016/j.aej.2021.04.097 |
Sumario: | We propose a Caputo-based fractional compartmental model for the dynamics of the novel COVID-19 pandemic. The newly proposed nonlinear fractional order model is an extension of a recently formulated integer-order COVID-19 mathematical model. Using basic concepts such as continuity and Banach fixed-point theorem, existence and uniqueness of the solution to the proposed model were shown. Furthermore, we analyze the stability of the model in the context of Ulam-Hyers and generalized Ulam-Hyers stability criteria. The concept of next-generation matrix was used to compute the basic reproduction number [Formula: see text] , a number that determines the spread or otherwise of the disease into the general population. We also investigated the local asymptotic stability for the derived disease-free equilibrium point. Numerical simulation of the constructed epidemic model was carried out using the fractional Adam-Bashforth-Moulton method to validate the obtained theoretical results. |
---|