Cargando…
Synthesis, molecular docking, and in silico ADMET studies of 4-benzyl-1-(2,4,6-trimethyl-benzyl)-piperidine: Potential Inhibitor of SARS-CoV2
Nowadays, over 200 countries face a wellbeing emergency because of epidemiological disease COVID-19 caused by the SARS-CoV-2 virus. It will cause a very high effect on the world’s economy and the worldwide health sector. The present work is an investigation of the newly synthesized 4-benzyl-1-(2,4,6...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8096530/ https://www.ncbi.nlm.nih.gov/pubmed/33975232 http://dx.doi.org/10.1016/j.bioorg.2021.104967 |
_version_ | 1783688178721357824 |
---|---|
author | Nandini Asha, R. Ravindran Durai Nayagam, B. Bhuvanesh, Nattamai |
author_facet | Nandini Asha, R. Ravindran Durai Nayagam, B. Bhuvanesh, Nattamai |
author_sort | Nandini Asha, R. |
collection | PubMed |
description | Nowadays, over 200 countries face a wellbeing emergency because of epidemiological disease COVID-19 caused by the SARS-CoV-2 virus. It will cause a very high effect on the world’s economy and the worldwide health sector. The present work is an investigation of the newly synthesized 4-benzyl-1-(2,4,6-trimethyl-benzyl)-piperidine (M1BZP) molecule’s inhibitory potential against important protein targets of SARS-CoV-2 using computational approaches. M1BZP crystallizes in monoclinic type with P1211 space group. For the title compound M1BZP, spectroscopic characterization like (1)H NMR, (13)C NMR, FTIR, were carried out. The geometry of the compound had been optimized by the DFT method and its results were compared with the X-ray diffraction data. The calculated energies for the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO) showed the stability and reactivity of the title compound. Intermolecular interactions in the crystal network were determined using Hirshfeld surface analyses. The molecular electrostatic potential (MEP) picture was drawn using the same level of theory to visualize the chemical reactivity and charge distribution on the molecule. Molecular docking study performed for the synthesized compound revealed an efficient interaction with the COVID-19 protease and resulted in good activities. We hope the present study would help workers in the field to develop potential vaccines and therapeutics against the novel coronavirus. Virtual ADME studies were carried out as well and a relationship between biological, electronic, and physicochemical qualifications of the target compound was determined. Toxicity prediction by computational technique for the title compound was also carried out. |
format | Online Article Text |
id | pubmed-8096530 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-80965302021-05-05 Synthesis, molecular docking, and in silico ADMET studies of 4-benzyl-1-(2,4,6-trimethyl-benzyl)-piperidine: Potential Inhibitor of SARS-CoV2 Nandini Asha, R. Ravindran Durai Nayagam, B. Bhuvanesh, Nattamai Bioorg Chem Article Nowadays, over 200 countries face a wellbeing emergency because of epidemiological disease COVID-19 caused by the SARS-CoV-2 virus. It will cause a very high effect on the world’s economy and the worldwide health sector. The present work is an investigation of the newly synthesized 4-benzyl-1-(2,4,6-trimethyl-benzyl)-piperidine (M1BZP) molecule’s inhibitory potential against important protein targets of SARS-CoV-2 using computational approaches. M1BZP crystallizes in monoclinic type with P1211 space group. For the title compound M1BZP, spectroscopic characterization like (1)H NMR, (13)C NMR, FTIR, were carried out. The geometry of the compound had been optimized by the DFT method and its results were compared with the X-ray diffraction data. The calculated energies for the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO) showed the stability and reactivity of the title compound. Intermolecular interactions in the crystal network were determined using Hirshfeld surface analyses. The molecular electrostatic potential (MEP) picture was drawn using the same level of theory to visualize the chemical reactivity and charge distribution on the molecule. Molecular docking study performed for the synthesized compound revealed an efficient interaction with the COVID-19 protease and resulted in good activities. We hope the present study would help workers in the field to develop potential vaccines and therapeutics against the novel coronavirus. Virtual ADME studies were carried out as well and a relationship between biological, electronic, and physicochemical qualifications of the target compound was determined. Toxicity prediction by computational technique for the title compound was also carried out. Elsevier Inc. 2021-07 2021-05-05 /pmc/articles/PMC8096530/ /pubmed/33975232 http://dx.doi.org/10.1016/j.bioorg.2021.104967 Text en © 2021 Elsevier Inc. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
spellingShingle | Article Nandini Asha, R. Ravindran Durai Nayagam, B. Bhuvanesh, Nattamai Synthesis, molecular docking, and in silico ADMET studies of 4-benzyl-1-(2,4,6-trimethyl-benzyl)-piperidine: Potential Inhibitor of SARS-CoV2 |
title | Synthesis, molecular docking, and in silico ADMET studies of 4-benzyl-1-(2,4,6-trimethyl-benzyl)-piperidine: Potential Inhibitor of SARS-CoV2 |
title_full | Synthesis, molecular docking, and in silico ADMET studies of 4-benzyl-1-(2,4,6-trimethyl-benzyl)-piperidine: Potential Inhibitor of SARS-CoV2 |
title_fullStr | Synthesis, molecular docking, and in silico ADMET studies of 4-benzyl-1-(2,4,6-trimethyl-benzyl)-piperidine: Potential Inhibitor of SARS-CoV2 |
title_full_unstemmed | Synthesis, molecular docking, and in silico ADMET studies of 4-benzyl-1-(2,4,6-trimethyl-benzyl)-piperidine: Potential Inhibitor of SARS-CoV2 |
title_short | Synthesis, molecular docking, and in silico ADMET studies of 4-benzyl-1-(2,4,6-trimethyl-benzyl)-piperidine: Potential Inhibitor of SARS-CoV2 |
title_sort | synthesis, molecular docking, and in silico admet studies of 4-benzyl-1-(2,4,6-trimethyl-benzyl)-piperidine: potential inhibitor of sars-cov2 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8096530/ https://www.ncbi.nlm.nih.gov/pubmed/33975232 http://dx.doi.org/10.1016/j.bioorg.2021.104967 |
work_keys_str_mv | AT nandiniashar synthesismoleculardockingandinsilicoadmetstudiesof4benzyl1246trimethylbenzylpiperidinepotentialinhibitorofsarscov2 AT ravindrandurainayagamb synthesismoleculardockingandinsilicoadmetstudiesof4benzyl1246trimethylbenzylpiperidinepotentialinhibitorofsarscov2 AT bhuvaneshnattamai synthesismoleculardockingandinsilicoadmetstudiesof4benzyl1246trimethylbenzylpiperidinepotentialinhibitorofsarscov2 |