Cargando…
KecNet: A Light Neural Network for Arrhythmia Classification Based on Knowledge Reinforcement
Acquiring electrocardiographic (ECG) signals and performing arrhythmia classification in mobile device scenarios have the advantages of short response time, almost no network bandwidth consumption, and human resource savings. In recent years, deep neural networks have become a popular method to effi...
Autores principales: | Lu, Peng, Gao, Yang, Xi, Hao, Zhang, Yabin, Gao, Chao, Zhou, Bing, Zhang, Hongpo, Chen, Liwei, Mao, Xiaobo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8096590/ https://www.ncbi.nlm.nih.gov/pubmed/33995984 http://dx.doi.org/10.1155/2021/6684954 |
Ejemplares similares
-
Identification of Arrhythmia by Using a Decision Tree and Gated Network Fusion Model
por: Lu, Peng, et al.
Publicado: (2021) -
Change in the Apparent Order at Different Temperatures
and Catalyst Volumes: Hydrodesulfurization of KEC-AR
por: Al-Fadhli, Jamal, et al.
Publicado: (2020) -
A New Multichannel Parallel Network Framework for the Special Structure of Multilead ECG
por: Lu, Peng, et al.
Publicado: (2020) -
An Effective LSTM Recurrent Network to Detect Arrhythmia on Imbalanced ECG Dataset
por: Gao, Junli, et al.
Publicado: (2019) -
Complete genome sequence of Escherichia coli
K_EC180, a bacterium producing shiga-like toxin isolated from swine
feces
por: Kim, Hyeri, et al.
Publicado: (2021)