Cargando…
Smoothing and stationarity enforcement framework for deep learning time-series forecasting
Time-series analysis and forecasting problems are generally considered as some of the most challenging and complicated problems in data mining. In this work, we propose a new complete framework for enhancing deep learning time-series models, which is based on a data preprocessing methodology. The pr...
Autores principales: | Livieris, Ioannis E., Stavroyiannis, Stavros, Iliadis, Lazaros, Pintelas, Panagiotis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8096631/ https://www.ncbi.nlm.nih.gov/pubmed/33967398 http://dx.doi.org/10.1007/s00521-021-06043-1 |
Ejemplares similares
-
An Advanced Deep Learning Model for Short-Term Forecasting U.S. Natural Gas Price and Movement
por: Livieris, Ioannis E., et al.
Publicado: (2020) -
Investigating the Problem of Cryptocurrency Price Prediction: A Deep Learning Approach
por: Pintelas, Emmanuel, et al.
Publicado: (2020) -
Explainable Machine Learning Framework for Image Classification Problems: Case Study on Glioma Cancer Prediction
por: Pintelas, Emmanuel, et al.
Publicado: (2020) -
Special Issue on Machine Learning and AI for Sensors
por: Pintelas, Panagiotis, et al.
Publicado: (2023) -
A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
por: Pintelas, Emmanuel, et al.
Publicado: (2021)