Cargando…
Weakly supervised temporal model for prediction of breast cancer distant recurrence
Efficient prediction of cancer recurrence in advance may help to recruit high risk breast cancer patients for clinical trial on-time and can guide a proper treatment plan. Several machine learning approaches have been developed for recurrence prediction in previous studies, but most of them use only...
Autores principales: | Sanyal, Josh, Tariq, Amara, Kurian, Allison W., Rubin, Daniel, Banerjee, Imon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8096809/ https://www.ncbi.nlm.nih.gov/pubmed/33947927 http://dx.doi.org/10.1038/s41598-021-89033-6 |
Ejemplares similares
-
Weakly supervised natural language processing for assessing patient-centered outcome following prostate cancer treatment
por: Banerjee, Imon, et al.
Publicado: (2019) -
Graph-based Fusion Modeling and Explanation for Disease Trajectory Prediction
por: Tariq, Amara, et al.
Publicado: (2022) -
Weak supervision as an efficient approach for automated seizure detection in electroencephalography
por: Saab, Khaled, et al.
Publicado: (2020) -
Distant supervision for medical concept normalization
por: Pattisapu, Nikhil, et al.
Publicado: (2020) -
Factoid Question Answering with Distant Supervision
por: Zhang, Hongzhi, et al.
Publicado: (2018)