Cargando…
2-step deep learning model for landmarks localization in spine radiographs
In this work we propose to use Deep Learning to automatically calculate the coordinates of the vertebral corners in sagittal x-rays images of the thoracolumbar spine and, from those landmarks, to calculate relevant radiological parameters such as L1–L5 and L1–S1 lordosis and sacral slope. For this p...
Autores principales: | Cina, Andrea, Bassani, Tito, Panico, Matteo, Luca, Andrea, Masharawi, Youssef, Brayda-Bruno, Marco, Galbusera, Fabio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8096829/ https://www.ncbi.nlm.nih.gov/pubmed/33947917 http://dx.doi.org/10.1038/s41598-021-89102-w |
Ejemplares similares
-
Automatic Diagnosis of Spinal Disorders on Radiographic Images: Leveraging Existing Unstructured Datasets With Natural Language Processing
por: Galbusera, Fabio, et al.
Publicado: (2021) -
A fresh look at spinal alignment and deformities: Automated analysis of a large database of 9832 biplanar radiographs
por: Galbusera, Fabio, et al.
Publicado: (2022) -
The importance of curve severity, type and instrumentation strategy in the surgical correction of adolescent idiopathic scoliosis: an in silico clinical trial on 64 cases
por: Galbusera, Fabio, et al.
Publicado: (2021) -
Semiautomated 3D Spine Reconstruction from Biplanar Radiographic Images: Prediction of Intervertebral Loading in Scoliotic Subjects
por: Bassani, Tito, et al.
Publicado: (2017) -
Automatic classification of the vertebral endplate lesions in magnetic resonance imaging by deep learning model
por: Bassani, Tito, et al.
Publicado: (2023)