Cargando…
Deep learning for gradability classification of handheld, non-mydriatic retinal images
Screening effectively identifies patients at risk of sight-threatening diabetic retinopathy (STDR) when retinal images are captured through dilated pupils. Pharmacological mydriasis is not logistically feasible in non-clinical, community DR screening, where acquiring gradable retinal images using ha...
Autores principales: | Nderitu, Paul, do Rio, Joan M. Nunez, Rasheed, Rajna, Raman, Rajiv, Rajalakshmi, Ramachandran, Bergeles, Christos, Sivaprasad, Sobha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8096843/ https://www.ncbi.nlm.nih.gov/pubmed/33947946 http://dx.doi.org/10.1038/s41598-021-89027-4 |
Ejemplares similares
-
Using deep learning to detect diabetic retinopathy on handheld non-mydriatic retinal images acquired by field workers in community settings
por: Nunez do Rio, Joan M., et al.
Publicado: (2023) -
Evaluating a Deep Learning Diabetic Retinopathy Grading System Developed on Mydriatic Retinal Images When Applied to Non-Mydriatic Community Screening
por: Nunez do Rio, Joan M., et al.
Publicado: (2022) -
Deep Learning-Based Segmentation and Quantification of Retinal Capillary Non-Perfusion on Ultra-Wide-Field Retinal Fluorescein Angiography
por: Nunez do Rio, Joan M., et al.
Publicado: (2020) -
Telemedicine screening of retinal diseases with a handheld portable non-mydriatic fundus camera
por: Jin, Kai, et al.
Publicado: (2017) -
Diabetic retinopathy screening guidelines in India: All India Ophthalmological Society diabetic retinopathy task force and Vitreoretinal Society of India Consensus Statement
por: Raman, Rajiv, et al.
Publicado: (2021)