Cargando…

Circular RNA expression profiles in the plasma of patients with infantile hemangioma determined using microarray analysis

Circular RNAs (circRNAs) are noncoding RNAs that have important roles in tumor progression. Previous studies have examined the circRNAs involved in infantile hemangioma (IH) tumors. The present study compared the circRNA levels in plasma samples from patients with IH and control individuals. The cir...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Zhiyu, Chai, Yimeng, Zhou, Zifu, Li, Xueqing, Bi, Jianhai, Huo, Ran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8097215/
https://www.ncbi.nlm.nih.gov/pubmed/33968165
http://dx.doi.org/10.3892/etm.2021.10066
Descripción
Sumario:Circular RNAs (circRNAs) are noncoding RNAs that have important roles in tumor progression. Previous studies have examined the circRNAs involved in infantile hemangioma (IH) tumors. The present study compared the circRNA levels in plasma samples from patients with IH and control individuals. The circRNA expression profiles were determined using microarray in three pairs of plasma samples from patients with proliferative IH and healthy control subjects. Expression of the identified differentially expressed circRNAs was verified using reverse transcription-quantitative PCR (RT-qPCR) and a bioinformatics analysis was performed to predict the microRNAs targeted by the validated circRNAs. From the circRNA expression profiles in the plasma of patients with IHs, 128 differentially expressed circRNAs were identified, of which 72 were upregulated and 56 were downregulated. The downregulated expression of three circRNAs [Homo sapiens (hsa)_circRNA_101566, hsa_circRNA_103546 and hsa_circRNA_103573] was verified using RT-qPCR. Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that all identified networks participated in angiogenesis and tumor formation and progression. It was determined that hsa_circRNA_101566, which is able to regulate the mTOR signaling pathway, may be an important regulatory molecule in IH development and that targeting of hsa_miR_520c is able to indirectly regulate the vascular endothelial growth factor signaling pathway. Further studies are required to clarify these effects and the underlying mechanisms.