Cargando…

Effect of Porphyromonas gingivalis lipopolysaccharide on calcification of human umbilical artery smooth muscle cells co-cultured with human periodontal ligament cells

Periodontitis is an independent risk factor for coronary heart disease. Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) was considered to be one of the main virulence factors. In addition, vascular smooth muscle cells transform into osteoblast-like cells in an arterial calcification process und...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Jing, Deng, Jing, Shang, Shuxian, Liu, Guirong, Song, Wenbin, Sun, Pei, Jiang, Wenjing, Pan, Keqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8097230/
https://www.ncbi.nlm.nih.gov/pubmed/33968185
http://dx.doi.org/10.3892/etm.2021.10087
_version_ 1783688314258194432
author Li, Jing
Deng, Jing
Shang, Shuxian
Liu, Guirong
Song, Wenbin
Sun, Pei
Jiang, Wenjing
Pan, Keqing
author_facet Li, Jing
Deng, Jing
Shang, Shuxian
Liu, Guirong
Song, Wenbin
Sun, Pei
Jiang, Wenjing
Pan, Keqing
author_sort Li, Jing
collection PubMed
description Periodontitis is an independent risk factor for coronary heart disease. Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) was considered to be one of the main virulence factors. In addition, vascular smooth muscle cells transform into osteoblast-like cells in an arterial calcification process under chronic inflammatory conditions. The present study aimed to determine the calcification induced by Pg-LPS in human umbilical artery smooth muscle cells (HUASMCs) co-cultured with human periodontal ligament cells (HPDLCs). An in vitro co-culture system was established using Transwell inserts. HUASMC proliferation and alkaline phosphatase (ALP) activity were measured with a Cell Counting Kit-8 and an ALP kit, respectively. Calcium nodule formation was detected using alizarin red S staining. The effects of Pg-LPS on the mRNA expression of the calcification genes of ALP, core-binding factor α1 (Runx2) and bone sialoprotein (BSP) were assessed using reverse transcription-quantitative PCR. The results indicated that Pg-LPS increased HUASMC proliferation and ALP activity. Furthermore, among all of the groups, calcium nodule formation was most extensive in co-cultured cells in the mineralization-inducing medium containing Pg-LPS. In addition, the expression of specific osteogenic genes (Runx2, ALP and BSP) significantly increased in the presence of Pg-LPS and mineralization-inducing medium, which was further enhanced in co-culture with HPDLCs. In conclusion, co-culture with HPDLCs increased the effect of Pg-LPS to stimulate the calcification of HUASMCs. It was suggested that besides the inflammation, periodontitis may promote the occurrence of vascular calcification. The study indicated that periodontal treatment of subgingival scaling to reduce and/or control Porphyromonas gingivalis may decrease the occurrence or severity of vascular calcification.
format Online
Article
Text
id pubmed-8097230
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-80972302021-05-07 Effect of Porphyromonas gingivalis lipopolysaccharide on calcification of human umbilical artery smooth muscle cells co-cultured with human periodontal ligament cells Li, Jing Deng, Jing Shang, Shuxian Liu, Guirong Song, Wenbin Sun, Pei Jiang, Wenjing Pan, Keqing Exp Ther Med Articles Periodontitis is an independent risk factor for coronary heart disease. Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) was considered to be one of the main virulence factors. In addition, vascular smooth muscle cells transform into osteoblast-like cells in an arterial calcification process under chronic inflammatory conditions. The present study aimed to determine the calcification induced by Pg-LPS in human umbilical artery smooth muscle cells (HUASMCs) co-cultured with human periodontal ligament cells (HPDLCs). An in vitro co-culture system was established using Transwell inserts. HUASMC proliferation and alkaline phosphatase (ALP) activity were measured with a Cell Counting Kit-8 and an ALP kit, respectively. Calcium nodule formation was detected using alizarin red S staining. The effects of Pg-LPS on the mRNA expression of the calcification genes of ALP, core-binding factor α1 (Runx2) and bone sialoprotein (BSP) were assessed using reverse transcription-quantitative PCR. The results indicated that Pg-LPS increased HUASMC proliferation and ALP activity. Furthermore, among all of the groups, calcium nodule formation was most extensive in co-cultured cells in the mineralization-inducing medium containing Pg-LPS. In addition, the expression of specific osteogenic genes (Runx2, ALP and BSP) significantly increased in the presence of Pg-LPS and mineralization-inducing medium, which was further enhanced in co-culture with HPDLCs. In conclusion, co-culture with HPDLCs increased the effect of Pg-LPS to stimulate the calcification of HUASMCs. It was suggested that besides the inflammation, periodontitis may promote the occurrence of vascular calcification. The study indicated that periodontal treatment of subgingival scaling to reduce and/or control Porphyromonas gingivalis may decrease the occurrence or severity of vascular calcification. D.A. Spandidos 2021-06 2021-04-20 /pmc/articles/PMC8097230/ /pubmed/33968185 http://dx.doi.org/10.3892/etm.2021.10087 Text en Copyright: © Li et al. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Li, Jing
Deng, Jing
Shang, Shuxian
Liu, Guirong
Song, Wenbin
Sun, Pei
Jiang, Wenjing
Pan, Keqing
Effect of Porphyromonas gingivalis lipopolysaccharide on calcification of human umbilical artery smooth muscle cells co-cultured with human periodontal ligament cells
title Effect of Porphyromonas gingivalis lipopolysaccharide on calcification of human umbilical artery smooth muscle cells co-cultured with human periodontal ligament cells
title_full Effect of Porphyromonas gingivalis lipopolysaccharide on calcification of human umbilical artery smooth muscle cells co-cultured with human periodontal ligament cells
title_fullStr Effect of Porphyromonas gingivalis lipopolysaccharide on calcification of human umbilical artery smooth muscle cells co-cultured with human periodontal ligament cells
title_full_unstemmed Effect of Porphyromonas gingivalis lipopolysaccharide on calcification of human umbilical artery smooth muscle cells co-cultured with human periodontal ligament cells
title_short Effect of Porphyromonas gingivalis lipopolysaccharide on calcification of human umbilical artery smooth muscle cells co-cultured with human periodontal ligament cells
title_sort effect of porphyromonas gingivalis lipopolysaccharide on calcification of human umbilical artery smooth muscle cells co-cultured with human periodontal ligament cells
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8097230/
https://www.ncbi.nlm.nih.gov/pubmed/33968185
http://dx.doi.org/10.3892/etm.2021.10087
work_keys_str_mv AT lijing effectofporphyromonasgingivalislipopolysaccharideoncalcificationofhumanumbilicalarterysmoothmusclecellscoculturedwithhumanperiodontalligamentcells
AT dengjing effectofporphyromonasgingivalislipopolysaccharideoncalcificationofhumanumbilicalarterysmoothmusclecellscoculturedwithhumanperiodontalligamentcells
AT shangshuxian effectofporphyromonasgingivalislipopolysaccharideoncalcificationofhumanumbilicalarterysmoothmusclecellscoculturedwithhumanperiodontalligamentcells
AT liuguirong effectofporphyromonasgingivalislipopolysaccharideoncalcificationofhumanumbilicalarterysmoothmusclecellscoculturedwithhumanperiodontalligamentcells
AT songwenbin effectofporphyromonasgingivalislipopolysaccharideoncalcificationofhumanumbilicalarterysmoothmusclecellscoculturedwithhumanperiodontalligamentcells
AT sunpei effectofporphyromonasgingivalislipopolysaccharideoncalcificationofhumanumbilicalarterysmoothmusclecellscoculturedwithhumanperiodontalligamentcells
AT jiangwenjing effectofporphyromonasgingivalislipopolysaccharideoncalcificationofhumanumbilicalarterysmoothmusclecellscoculturedwithhumanperiodontalligamentcells
AT pankeqing effectofporphyromonasgingivalislipopolysaccharideoncalcificationofhumanumbilicalarterysmoothmusclecellscoculturedwithhumanperiodontalligamentcells