Cargando…
A novel LSTM–CNN–grid search-based deep neural network for sentiment analysis
As the number of users getting acquainted with the Internet is escalating rapidly, there is more user-generated content on the web. Comprehending hidden opinions, sentiments, and emotions in emails, tweets, reviews, and comments is a challenge and equally crucial for social media monitoring, brand m...
Autores principales: | Priyadarshini, Ishaani, Cotton, Chase |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8097246/ https://www.ncbi.nlm.nih.gov/pubmed/33967391 http://dx.doi.org/10.1007/s11227-021-03838-w |
Ejemplares similares
-
PPG Signals-Based Blood-Pressure Estimation Using Grid Search in Hyperparameter Optimization of CNN–LSTM
por: Mahardika T, Nurul Qashri, et al.
Publicado: (2023) -
Research on sentiment classification for netizens based on the BERT-BiLSTM-TextCNN model
por: Jiang, Xuchu, et al.
Publicado: (2022) -
Advertising Click-Through Rate Prediction Based on CNN-LSTM Neural Network
por: Zhu, Danqing
Publicado: (2021) -
ECG signal classification based on deep CNN and BiLSTM
por: Cheng, Jinyong, et al.
Publicado: (2021) -
The Public Health Contribution of Sentiment Analysis of Monkeypox Tweets to Detect Polarities Using the CNN-LSTM Model
por: Iparraguirre-Villanueva, Orlando, et al.
Publicado: (2023)