Cargando…
DeepVISP: Deep Learning for Virus Site Integration Prediction and Motif Discovery
Approximately 15% of human cancers are estimated to be attributed to viruses. Virus sequences can be integrated into the host genome, leading to genomic instability and carcinogenesis. Here, a new deep convolutional neural network (CNN) model is developed with attention architecture, namely DeepVISP...
Autores principales: | Xu, Haodong, Jia, Peilin, Zhao, Zhongming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8097320/ https://www.ncbi.nlm.nih.gov/pubmed/33977077 http://dx.doi.org/10.1002/advs.202004958 |
Ejemplares similares
-
Deep learning for detecting and elucidating human T-cell leukemia virus type 1 integration in the human genome
por: Xu, Haodong, et al.
Publicado: (2023) -
DeepFun: a deep learning sequence-based model to decipher non-coding variant effect in a tissue- and cell type-specific manner
por: Pei, Guangsheng, et al.
Publicado: (2021) -
VirusFinder: Software for Efficient and Accurate Detection of Viruses and Their Integration Sites in Host Genomes through Next Generation Sequencing Data
por: Wang, Qingguo, et al.
Publicado: (2013) -
NetBCE: An Interpretable Deep Neural Network for Accurate Prediction of Linear B-cell Epitopes
por: Xu, Haodong, et al.
Publicado: (2022) -
DeepHBV: a deep learning model to predict hepatitis B virus (HBV) integration sites
por: Wu, Canbiao, et al.
Publicado: (2021)