Cargando…
Operando Study of Thermal Oxidation of Monolayer MoS(2)
Monolayer MoS(2) is a promising semiconductor to overcome the physical dimension limits of microelectronic devices. Understanding the thermochemical stability of MoS(2) is essential since these devices generate heat and are susceptible to oxidative environments. Herein, the promoting effect of molyb...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8097340/ https://www.ncbi.nlm.nih.gov/pubmed/33977043 http://dx.doi.org/10.1002/advs.202002768 |
_version_ | 1783688334885781504 |
---|---|
author | Park, Sangwook Garcia‐Esparza, Angel T. Abroshan, Hadi Abraham, Baxter Vinson, John Gallo, Alessandro Nordlund, Dennis Park, Joonsuk Kim, Taeho Roy Vallez, Lauren Alonso‐Mori, Roberto Sokaras, Dimosthenis Zheng, Xiaolin |
author_facet | Park, Sangwook Garcia‐Esparza, Angel T. Abroshan, Hadi Abraham, Baxter Vinson, John Gallo, Alessandro Nordlund, Dennis Park, Joonsuk Kim, Taeho Roy Vallez, Lauren Alonso‐Mori, Roberto Sokaras, Dimosthenis Zheng, Xiaolin |
author_sort | Park, Sangwook |
collection | PubMed |
description | Monolayer MoS(2) is a promising semiconductor to overcome the physical dimension limits of microelectronic devices. Understanding the thermochemical stability of MoS(2) is essential since these devices generate heat and are susceptible to oxidative environments. Herein, the promoting effect of molybdenum oxides (MoO(x)) particles on the thermal oxidation of MoS(2) monolayers is shown by employing operando X‐ray absorption spectroscopy, ex situ scanning electron microscopy and X‐ray photoelectron spectroscopy. The study demonstrates that chemical vapor deposition‐grown MoS(2) monolayers contain intrinsic MoO(x) and are quickly oxidized at 100 °C (3 vol% O(2)/He), in contrast to previously reported oxidation thresholds (e.g., 250 °C, t ≤ 1 h in the air). Otherwise, removing MoO(x) increases the thermal oxidation onset temperature of monolayer MoS(2) to 300 °C. These results indicate that MoO(x) promote oxidation. An oxide‐free lattice is critical to the long‐term stability of monolayer MoS(2) in state‐of‐the‐art 2D electronic, optical, and catalytic applications. |
format | Online Article Text |
id | pubmed-8097340 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-80973402021-05-10 Operando Study of Thermal Oxidation of Monolayer MoS(2) Park, Sangwook Garcia‐Esparza, Angel T. Abroshan, Hadi Abraham, Baxter Vinson, John Gallo, Alessandro Nordlund, Dennis Park, Joonsuk Kim, Taeho Roy Vallez, Lauren Alonso‐Mori, Roberto Sokaras, Dimosthenis Zheng, Xiaolin Adv Sci (Weinh) Communications Monolayer MoS(2) is a promising semiconductor to overcome the physical dimension limits of microelectronic devices. Understanding the thermochemical stability of MoS(2) is essential since these devices generate heat and are susceptible to oxidative environments. Herein, the promoting effect of molybdenum oxides (MoO(x)) particles on the thermal oxidation of MoS(2) monolayers is shown by employing operando X‐ray absorption spectroscopy, ex situ scanning electron microscopy and X‐ray photoelectron spectroscopy. The study demonstrates that chemical vapor deposition‐grown MoS(2) monolayers contain intrinsic MoO(x) and are quickly oxidized at 100 °C (3 vol% O(2)/He), in contrast to previously reported oxidation thresholds (e.g., 250 °C, t ≤ 1 h in the air). Otherwise, removing MoO(x) increases the thermal oxidation onset temperature of monolayer MoS(2) to 300 °C. These results indicate that MoO(x) promote oxidation. An oxide‐free lattice is critical to the long‐term stability of monolayer MoS(2) in state‐of‐the‐art 2D electronic, optical, and catalytic applications. John Wiley and Sons Inc. 2021-03-01 /pmc/articles/PMC8097340/ /pubmed/33977043 http://dx.doi.org/10.1002/advs.202002768 Text en © 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Communications Park, Sangwook Garcia‐Esparza, Angel T. Abroshan, Hadi Abraham, Baxter Vinson, John Gallo, Alessandro Nordlund, Dennis Park, Joonsuk Kim, Taeho Roy Vallez, Lauren Alonso‐Mori, Roberto Sokaras, Dimosthenis Zheng, Xiaolin Operando Study of Thermal Oxidation of Monolayer MoS(2) |
title | Operando Study of Thermal Oxidation of Monolayer MoS(2)
|
title_full | Operando Study of Thermal Oxidation of Monolayer MoS(2)
|
title_fullStr | Operando Study of Thermal Oxidation of Monolayer MoS(2)
|
title_full_unstemmed | Operando Study of Thermal Oxidation of Monolayer MoS(2)
|
title_short | Operando Study of Thermal Oxidation of Monolayer MoS(2)
|
title_sort | operando study of thermal oxidation of monolayer mos(2) |
topic | Communications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8097340/ https://www.ncbi.nlm.nih.gov/pubmed/33977043 http://dx.doi.org/10.1002/advs.202002768 |
work_keys_str_mv | AT parksangwook operandostudyofthermaloxidationofmonolayermos2 AT garciaesparzaangelt operandostudyofthermaloxidationofmonolayermos2 AT abroshanhadi operandostudyofthermaloxidationofmonolayermos2 AT abrahambaxter operandostudyofthermaloxidationofmonolayermos2 AT vinsonjohn operandostudyofthermaloxidationofmonolayermos2 AT galloalessandro operandostudyofthermaloxidationofmonolayermos2 AT nordlunddennis operandostudyofthermaloxidationofmonolayermos2 AT parkjoonsuk operandostudyofthermaloxidationofmonolayermos2 AT kimtaehoroy operandostudyofthermaloxidationofmonolayermos2 AT vallezlauren operandostudyofthermaloxidationofmonolayermos2 AT alonsomoriroberto operandostudyofthermaloxidationofmonolayermos2 AT sokarasdimosthenis operandostudyofthermaloxidationofmonolayermos2 AT zhengxiaolin operandostudyofthermaloxidationofmonolayermos2 |