Cargando…

Diversity in striatal synaptic circuits arises from distinct embryonic progenitor pools in the ventral telencephalon

Synaptic circuits in the brain are precisely organized, but the processes that govern this precision are poorly understood. Here, we explore how distinct embryonic neural progenitor pools in the lateral ganglionic eminence contribute to neuronal diversity and synaptic circuit connectivity in the mou...

Descripción completa

Detalles Bibliográficos
Autores principales: van Heusden, Fran, Macey-Dare, Anežka, Gordon, Jack, Krajeski, Rohan, Sharott, Andrew, Ellender, Tommas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8097690/
https://www.ncbi.nlm.nih.gov/pubmed/33910016
http://dx.doi.org/10.1016/j.celrep.2021.109041
_version_ 1783688369797070848
author van Heusden, Fran
Macey-Dare, Anežka
Gordon, Jack
Krajeski, Rohan
Sharott, Andrew
Ellender, Tommas
author_facet van Heusden, Fran
Macey-Dare, Anežka
Gordon, Jack
Krajeski, Rohan
Sharott, Andrew
Ellender, Tommas
author_sort van Heusden, Fran
collection PubMed
description Synaptic circuits in the brain are precisely organized, but the processes that govern this precision are poorly understood. Here, we explore how distinct embryonic neural progenitor pools in the lateral ganglionic eminence contribute to neuronal diversity and synaptic circuit connectivity in the mouse striatum. In utero labeling of Tα1-expressing apical intermediate progenitors (aIP), as well as other progenitors (OP), reveals that both progenitors generate direct and indirect pathway spiny projection neurons (SPNs) with similar electrophysiological and anatomical properties and are intermingled in medial striatum. Subsequent optogenetic circuit-mapping experiments demonstrate that progenitor origin significantly impacts long-range excitatory input strength, with medial prefrontal cortex preferentially driving aIP-derived SPNs and visual cortex preferentially driving OP-derived SPNs. In contrast, the strength of local inhibitory inputs among SPNs is controlled by birthdate rather than progenitor origin. Combined, these results demonstrate distinct roles for embryonic progenitor origin in shaping neuronal and circuit properties of the postnatal striatum.
format Online
Article
Text
id pubmed-8097690
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-80976902021-05-13 Diversity in striatal synaptic circuits arises from distinct embryonic progenitor pools in the ventral telencephalon van Heusden, Fran Macey-Dare, Anežka Gordon, Jack Krajeski, Rohan Sharott, Andrew Ellender, Tommas Cell Rep Report Synaptic circuits in the brain are precisely organized, but the processes that govern this precision are poorly understood. Here, we explore how distinct embryonic neural progenitor pools in the lateral ganglionic eminence contribute to neuronal diversity and synaptic circuit connectivity in the mouse striatum. In utero labeling of Tα1-expressing apical intermediate progenitors (aIP), as well as other progenitors (OP), reveals that both progenitors generate direct and indirect pathway spiny projection neurons (SPNs) with similar electrophysiological and anatomical properties and are intermingled in medial striatum. Subsequent optogenetic circuit-mapping experiments demonstrate that progenitor origin significantly impacts long-range excitatory input strength, with medial prefrontal cortex preferentially driving aIP-derived SPNs and visual cortex preferentially driving OP-derived SPNs. In contrast, the strength of local inhibitory inputs among SPNs is controlled by birthdate rather than progenitor origin. Combined, these results demonstrate distinct roles for embryonic progenitor origin in shaping neuronal and circuit properties of the postnatal striatum. Cell Press 2021-04-27 /pmc/articles/PMC8097690/ /pubmed/33910016 http://dx.doi.org/10.1016/j.celrep.2021.109041 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Report
van Heusden, Fran
Macey-Dare, Anežka
Gordon, Jack
Krajeski, Rohan
Sharott, Andrew
Ellender, Tommas
Diversity in striatal synaptic circuits arises from distinct embryonic progenitor pools in the ventral telencephalon
title Diversity in striatal synaptic circuits arises from distinct embryonic progenitor pools in the ventral telencephalon
title_full Diversity in striatal synaptic circuits arises from distinct embryonic progenitor pools in the ventral telencephalon
title_fullStr Diversity in striatal synaptic circuits arises from distinct embryonic progenitor pools in the ventral telencephalon
title_full_unstemmed Diversity in striatal synaptic circuits arises from distinct embryonic progenitor pools in the ventral telencephalon
title_short Diversity in striatal synaptic circuits arises from distinct embryonic progenitor pools in the ventral telencephalon
title_sort diversity in striatal synaptic circuits arises from distinct embryonic progenitor pools in the ventral telencephalon
topic Report
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8097690/
https://www.ncbi.nlm.nih.gov/pubmed/33910016
http://dx.doi.org/10.1016/j.celrep.2021.109041
work_keys_str_mv AT vanheusdenfran diversityinstriatalsynapticcircuitsarisesfromdistinctembryonicprogenitorpoolsintheventraltelencephalon
AT maceydareanezka diversityinstriatalsynapticcircuitsarisesfromdistinctembryonicprogenitorpoolsintheventraltelencephalon
AT gordonjack diversityinstriatalsynapticcircuitsarisesfromdistinctembryonicprogenitorpoolsintheventraltelencephalon
AT krajeskirohan diversityinstriatalsynapticcircuitsarisesfromdistinctembryonicprogenitorpoolsintheventraltelencephalon
AT sharottandrew diversityinstriatalsynapticcircuitsarisesfromdistinctembryonicprogenitorpoolsintheventraltelencephalon
AT ellendertommas diversityinstriatalsynapticcircuitsarisesfromdistinctembryonicprogenitorpoolsintheventraltelencephalon