Cargando…
Diversity in striatal synaptic circuits arises from distinct embryonic progenitor pools in the ventral telencephalon
Synaptic circuits in the brain are precisely organized, but the processes that govern this precision are poorly understood. Here, we explore how distinct embryonic neural progenitor pools in the lateral ganglionic eminence contribute to neuronal diversity and synaptic circuit connectivity in the mou...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8097690/ https://www.ncbi.nlm.nih.gov/pubmed/33910016 http://dx.doi.org/10.1016/j.celrep.2021.109041 |
_version_ | 1783688369797070848 |
---|---|
author | van Heusden, Fran Macey-Dare, Anežka Gordon, Jack Krajeski, Rohan Sharott, Andrew Ellender, Tommas |
author_facet | van Heusden, Fran Macey-Dare, Anežka Gordon, Jack Krajeski, Rohan Sharott, Andrew Ellender, Tommas |
author_sort | van Heusden, Fran |
collection | PubMed |
description | Synaptic circuits in the brain are precisely organized, but the processes that govern this precision are poorly understood. Here, we explore how distinct embryonic neural progenitor pools in the lateral ganglionic eminence contribute to neuronal diversity and synaptic circuit connectivity in the mouse striatum. In utero labeling of Tα1-expressing apical intermediate progenitors (aIP), as well as other progenitors (OP), reveals that both progenitors generate direct and indirect pathway spiny projection neurons (SPNs) with similar electrophysiological and anatomical properties and are intermingled in medial striatum. Subsequent optogenetic circuit-mapping experiments demonstrate that progenitor origin significantly impacts long-range excitatory input strength, with medial prefrontal cortex preferentially driving aIP-derived SPNs and visual cortex preferentially driving OP-derived SPNs. In contrast, the strength of local inhibitory inputs among SPNs is controlled by birthdate rather than progenitor origin. Combined, these results demonstrate distinct roles for embryonic progenitor origin in shaping neuronal and circuit properties of the postnatal striatum. |
format | Online Article Text |
id | pubmed-8097690 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-80976902021-05-13 Diversity in striatal synaptic circuits arises from distinct embryonic progenitor pools in the ventral telencephalon van Heusden, Fran Macey-Dare, Anežka Gordon, Jack Krajeski, Rohan Sharott, Andrew Ellender, Tommas Cell Rep Report Synaptic circuits in the brain are precisely organized, but the processes that govern this precision are poorly understood. Here, we explore how distinct embryonic neural progenitor pools in the lateral ganglionic eminence contribute to neuronal diversity and synaptic circuit connectivity in the mouse striatum. In utero labeling of Tα1-expressing apical intermediate progenitors (aIP), as well as other progenitors (OP), reveals that both progenitors generate direct and indirect pathway spiny projection neurons (SPNs) with similar electrophysiological and anatomical properties and are intermingled in medial striatum. Subsequent optogenetic circuit-mapping experiments demonstrate that progenitor origin significantly impacts long-range excitatory input strength, with medial prefrontal cortex preferentially driving aIP-derived SPNs and visual cortex preferentially driving OP-derived SPNs. In contrast, the strength of local inhibitory inputs among SPNs is controlled by birthdate rather than progenitor origin. Combined, these results demonstrate distinct roles for embryonic progenitor origin in shaping neuronal and circuit properties of the postnatal striatum. Cell Press 2021-04-27 /pmc/articles/PMC8097690/ /pubmed/33910016 http://dx.doi.org/10.1016/j.celrep.2021.109041 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Report van Heusden, Fran Macey-Dare, Anežka Gordon, Jack Krajeski, Rohan Sharott, Andrew Ellender, Tommas Diversity in striatal synaptic circuits arises from distinct embryonic progenitor pools in the ventral telencephalon |
title | Diversity in striatal synaptic circuits arises from distinct embryonic progenitor pools in the ventral telencephalon |
title_full | Diversity in striatal synaptic circuits arises from distinct embryonic progenitor pools in the ventral telencephalon |
title_fullStr | Diversity in striatal synaptic circuits arises from distinct embryonic progenitor pools in the ventral telencephalon |
title_full_unstemmed | Diversity in striatal synaptic circuits arises from distinct embryonic progenitor pools in the ventral telencephalon |
title_short | Diversity in striatal synaptic circuits arises from distinct embryonic progenitor pools in the ventral telencephalon |
title_sort | diversity in striatal synaptic circuits arises from distinct embryonic progenitor pools in the ventral telencephalon |
topic | Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8097690/ https://www.ncbi.nlm.nih.gov/pubmed/33910016 http://dx.doi.org/10.1016/j.celrep.2021.109041 |
work_keys_str_mv | AT vanheusdenfran diversityinstriatalsynapticcircuitsarisesfromdistinctembryonicprogenitorpoolsintheventraltelencephalon AT maceydareanezka diversityinstriatalsynapticcircuitsarisesfromdistinctembryonicprogenitorpoolsintheventraltelencephalon AT gordonjack diversityinstriatalsynapticcircuitsarisesfromdistinctembryonicprogenitorpoolsintheventraltelencephalon AT krajeskirohan diversityinstriatalsynapticcircuitsarisesfromdistinctembryonicprogenitorpoolsintheventraltelencephalon AT sharottandrew diversityinstriatalsynapticcircuitsarisesfromdistinctembryonicprogenitorpoolsintheventraltelencephalon AT ellendertommas diversityinstriatalsynapticcircuitsarisesfromdistinctembryonicprogenitorpoolsintheventraltelencephalon |