Cargando…
DeepNetBim: deep learning model for predicting HLA-epitope interactions based on network analysis by harnessing binding and immunogenicity information
BACKGROUND: Epitope prediction is a useful approach in cancer immunology and immunotherapy. Many computational methods, including machine learning and network analysis, have been developed quickly for such purposes. However, regarding clinical applications, the existing tools are insufficient becaus...
Autores principales: | Yang, Xiaoyun, Zhao, Liyuan, Wei, Fang, Li, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8097772/ https://www.ncbi.nlm.nih.gov/pubmed/33952199 http://dx.doi.org/10.1186/s12859-021-04155-y |
Ejemplares similares
-
Deep learning methods improve linear B-cell epitope prediction
por: Liu, Tao, et al.
Publicado: (2020) -
DeepHLApan: A Deep Learning Approach for Neoantigen Prediction Considering Both HLA-Peptide Binding and Immunogenicity
por: Wu, Jingcheng, et al.
Publicado: (2019) -
Combining deep mutational scanning to heatmap of HLA class II binding of immunogenic sequences to preserve functionality and mitigate predicted immunogenicity
por: Sivelle, Coline, et al.
Publicado: (2023) -
MethylNet: an automated and modular deep learning approach for DNA methylation analysis
por: Levy, Joshua J., et al.
Publicado: (2020) -
In silico characterization of immunogenic epitopes presented by HLA-Cw*0401
por: Tong, Joo Chuan, et al.
Publicado: (2007)